CHINESE JOURNAL
Jun 2004 Vol 21 No 3
OF ENGINEERING MAT HEMATICS

Article ID:1005-3085(2004)03-0285-22

Free Boundary Problems in the Steel Industry

AD Fiti!, JR. Ockendon?, C.P Please’

(1- School of Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ UK;
9- OCIAM, Mathematical Institute, 24-2% St. Qiles, Oxford, OX1 3LB)

Abstract: This paper considers two novel free boundary problems that emerge from modelling prd—
cesses basic to steel manufacture. The first process concerns the spray cooling of hot steel
sheet during the process of continuous casting Here, an important practical considera-
tion is the non-monotonicity of the measured heat transfer from the steel as a function of
the steel temperature In order to understand this phenomenon, a two-phase Aow mmodel
is written down for the heating and vapourisation of the water spray This model relies
on a microscale analysis of droplet vapourisation and, in a steady state, it reduces to a
coupled system of nonlinear ordinary differential equations for the spray temperature and
water conbent. This system predicts the conditions for the existence or otherwise of a free
boundary separating the two-phase region from a dry vapour layer close to the steel plate.
The thickness of this vapour layer is determined by the solution of a generalised Stefan
problem. The second pProcess Concerns the macroscopic medelling of pig iron production
in blast furnaces. In the simplest scenario, the blast furnace may be roughly divided into
a porous solid region overlaying a hot high pressure gaseous zome. The gas reacts with
the solid in a thin “infermediate region” at the base of the solid region and it is in this
intermediate region that the pig iron is produced, A free boundary model is proposed for
the location of the intermediate region and its stability is investigated.
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1 Imtroduction

The aim of this paper is to describe scme simple mathematical modelling and analysis
that can help to understand the functioning of two processes fundamental to steel manufacture
Both processes concern the spatial inhomogeneity of macroscopic heat and mass transfer. The
first is mosivated by the need to quantify the effectiveness of the spray cooling of hot steel
sheet, where the existence or otherwise of a dry vapour layer near the sheet is vital; the second
concerns the morphology of the solids in a blast furnace, where the location and stability of the
reactive layer in which the pig iron is produced is vital.

Although the paper is divided into distinct halves, each with its own more detailed intro-
duction and conclusions, the same basic mathematical methodology is used throughout; this
comprises modelling, nondimensionalisation, asympsotic and numerical analysis and a discus-
sion of the physical applicability of the predictions.
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2 Spray Cooling

2.1 Physical background

The simplest scenario for the cooling of hot steel sheet by water sprays during continuous
casting is to assume that the spray consists of a large number of water droplets that are projected
normally towards the steel surface and that all the relevant physical variables depend only on
time and distance from the steel surface

The main purpose of this investigation is to explain the qualitative results of Figure 1, where
the measured heat transfer Q from the steel is plotted against the surface steel temperature.
One might expect that, for a constant rate of spraying, as the steel temperature incrsased so
the heat transfer from the steel would increase However, Figure 1 shows that this is not the
case. Moreover for strong sprays, droplets of water can clearly be seen “running of” the hot
steel. Let us therefore consider two extreme scenarios for the way in which the heat transfer is
affected by the spraying rate:

» For low spraying rates, the heat transfer from the steel is sufficiently large that all water
droplets are vapourised before they reach the surface of the hot steel. This means that
the steel is surrounded by a “vapour blanket” much thicker than a typical droplet size.
Obviously this is & non-optimal condition as far as the cooling of the steel is concerned,
because this blanket acts as an insulator for the hot steel.

o For high spraying rates, fna.ny droplets arrive at the surface of the steel without having
vapourised. Once such droplets impact the steel,

The “Leidenfrost ef-
fect”[3] allows the droplets Q
(a) to remain intact for HEAT
longer than might be ex- TRANSFER
pected, owing to the insu-
Iating vapour blanket that
is formed at the infer-

face between an individual
droplet and the hot steel

Q
and (b) to move across the : : C
steel ina Virtually fIiCtiOIl— 200 1000 STEEL
TEMPERATURE

free manner -
We can now propose Figure 1: Heat transfer Q as a function of steel temperature for

that the non-monotonicity steel cooling at a constant spray rate

in Figure 1 is related to the

existence of an optimal regime that prevails when the droplets arrive at the surface of the steel

just as their radius drops to zero; when the steel temperature is too high for the prescribed

spray rate, the first of the above scenarios is operating, and when it is too low the second

scenario takes over. Hence, one of the major outputs of the model that we seek to develop

below will be to predict the conditions under which optimal vapourisation can occur.
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2.2 Mathematical modelling of the water spray

We now prépose a simple two-phase flow model for the flow and vapourisation of water
drops in the vicinity of hot steel The model is based on the “ensemble averaging” two-phase
flow methodology outlined in [1]. For simplicity we only consider flow in one space dimension
z, which is normal to the steel surface, and assume that there are two phases only: the droplets
(dispersed phase) and the vapour (continuous phase) It is realistic to assume that the vapour
is incompressible, and thus the equations that govern the unidirectional fow are

(pac)s + (psc)e = —F
(oo (1~ )i+ (pg(l — ) = T
(paor)s + (pac®)s = —@—uf,
{pg(1— a)ul + (Pg(l - a}vz)w +Pgz T @ +uf, {4)
pecp((@Te + (uT)z) = kTwt B, (5)
pgpg((1— a)Tg)e + {(1 = ayTy)z) = Hkglgee — E. (6)

In (1)—(6) the notation is as follows: ¢ denotes time, pa and pg denote the density of the
droplets and the vapour respectively, o denotes the void fraction of droplets (0 < o <1 -
when o = 0 there are no drops), & and v denote the respective speeds of the droplets and the
vapour, pg denotes the pressure in the vapour phase and the droplet and gas temperatures are
given by T and T, Ty denotes the temperature of vapourisation of the fluid in the droplets.
The thermal conductivity and specific heat are denoted by k and ¢, respectively, a subscript
g denoting properties in the gas. All such thermal properties are assumed 0 be constant (see
Appendix 1 for typical values). The two-phase fiow problem is driven by the source terms f,
& and E. The right-hand sides of (1) and (2) characterise the mass that is transferred from
the droplets to the vapour as a droplet vapouriges, with f denoting the mass per second per
unit volume that is transferred. At present, f is unknown and needs to be specifled using
a submodel. The term & accounts for the viscous drag experienced by the droplets as they
move through the gas We assume henceforth that, since a source has no drag in a slow flow,
standard drag models may be used and it is not necessary to pursue the fact that the droplets
are vapourising F denotes the distributed energy sources and sinks that affect the gas and the
droplet flow. We also note that, if the mumber density (number per unit volume) of droplets in
the flow is denoted by N, then

) %wsSN = q, {7

where s is the average droplet radius )
It should be noted that a number of common two-phase flow assumptions have been made
in deriving the governing equations (1)—(6). In particular:

¢ we have followed |1} in dealing with products of averages;

o all soutces of drag in the momentum equations have been lumped together via & single
drag term &;

e the standard “dusty gas” two-phase flow hypothesis (see, for example 71]) has been invoked
in order to set the “pressure” in the drops equal to a constant
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We now consider the extra information that we need to close the equations {1)~(6). First,
we note that the mass transfer term is given by

= —drpgs?5N, (8)

since there are V droplets each of density pg, the surface area of each of which is 475%, and the
surface recedes at a rate &; of course, a submodel to determine § is still required if (8) is to be
of any use.

Determining an accurate form for the drag, @, is not a simple matter as the averaging
involved has to be carried out rather carefully. In [4], it was found that, for the disperse low
Reynolds number flows relevant to spray cocling,

o= Sap,

I 2 ('U.-*'U),

where 4, denotes the dynainic viscosity of the gas.

One of the governing equations (1)~(6) may be dealt with at once. We observe that the
conduction time scale 1. in a drop of radius 89 Is given according to the values in the Appendix
1 by -

2
82 pac
7= 0P e 10 %sec.
k

This suggests that a drop travelling a typical distance of 1m at a speed of 5m/s takes only about
three thousandths of its total travel time to heat up by conduction in the drop. We conciude
that sensible heating of a drop is thus virtually instantaneous and the vapourisation process is
controlled completely by latent heat. The temperature in a droplet iz thus essentially constant
and so, from (5), we have E = —fe Ty

2.3 Drop vapourisation
The two-phase fow model presented in section 2.2 cannot be analysed until a suitable
stbmedel has been proposed for the vapourisation of an individual droplet so that the mass
source term f can be determined. We therefore consider the local problem close to s, single
_,d_rople.t. Since the temperature in a droplet is effectively constant, the defails of the drop
vapourisation are determined entirely by a local Stefan problem in the gas We assume that
the local problem is spherically symmetric and that the the velocity of the gas produced by the
vapourising droplet liquid relative to the centre of the droplet is given by Ygr. We denote by r
the distance from the centre of a droplet and assurne that the droplet (which has initis] radius

50) has radius s(z) at time ¢ Conservation of mass for the gas then yields

I
r—2(?"2'l}g£)r = {.
The local gas temperature T(r,t) satisfies
kg 2
ﬁ(r Tr)r = p3epg (T +valy),
where we will soon see that the right-hand side may be neglected, with

ToTy(z,t) asr—sc0, T=Ty a r = s{t}
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The specification of the local problem is completed by supplying a boundary condifion for
vy; at the vapourisation front s(t) and a Stefan condition to allow the free boundary s{t) to be
determined. To derive the former, suppose that the free boundary r = s(t) moves in a time dé
tor = s{t+di) Then the amount of droplet liquid that is gasified is pgls(t + dt) — s(z)]. Since
at the free boundary the gas moves away with a radial speed vy + 8, mass conservation dictates
that

Ugt = (u) § at r=s(t). (10)
Py
Since in the current case of interest pg > pg, We immediately approximate (10) by

Vg = Pds ot r= s(t).
Py

The Stefar condition is, as usual, given by
—paLs = ky T, (11)

where L denotes the latent heat of vapourisation of the fluid in a droplet, and use has been
made of the fact that, by our earlier a,rgﬁments, the temperature gradient within the drop is
ZEro.

It is apparent from (11) that the time scale for droplet evaporation is of O(paLsd/k, (T, —
Ty)) which, for the values given in the Appendix 1, greatly exceeds 7, as expected. Moreover,
the right-hand side of (9) 15 of O(cpg(Ty — Tv)/L) = 7, say, relative to the left-hand side. This
parameter is small, and this justifies our use of the quasi-steady solution

4528 Ls? (1 1)

- — T =T
Ugi pgﬂ‘z ’ v+ pod kg

T8
Hence, from (9), following an individual droplet the radius evolves according to

_ k(T t) - Tv)
spal

2.4 Steady-state analysis

Now that a submodel has been proposed for 3, we are in a position to aﬁalyse the squations
of motion (1)~(6) Start-up or wind-down processes could of course be considered by adopting
a mumerical approach o (1)-{6), but here we will only consider the steady state in which all

the time derivatives in (1)~(6) are zero and ¢ in (12) is replaced by the convective derivative
Uz

In addition we ignore equations (4) and (5) on the grounds that the former serves only to
provide an equation for the gas pressure (which could be caleulated, if desired, once all the
other variables have been determined) and, as already noted, the latter simply states that the
temperature in & droplet is constant. We therefore study the ordinary differential equations

(pdau)‘-v = -f (13)
(Pg(l"a)'u):c = f (14}
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Yoy (u—v)

(paon®)s = —Sa uf, (15)
- kg _
we = 2 (@1~ T) (16)
PaCog((1 —a)vTg)e = kyTyew + fope T, (17)

where, using (7), (8) and (12),
f= %%!%Q(Tg(m, t) —TIv).

The equations are to be solved in the region 0 € z £ D where z = 0 denotes the spray jet
orifices and z = D the surface of the steel. A number of different specifications of boundary
conditions are possible, but for the present we asswme that the properties of the water spray
are known at z = 0, the temperature gradient is zero there, and at £ = D the gas has the same
temperature as the steel and no gas can pass through the steel. Thus

Te(0) =0, s(0)=sp, a0)=0ay, u(0)=U
and
v(D)=0, T,(D)="T,,
where T denotes the steel temperature, oy and sy denote respectively the initial void fraction

and drop radius, and {7 denotes the droplet speed at the spray nozzle exit.
We can now non-dimensionalise the the mode? according to

_ U
To=Tv +8(T; —Tv), a=omd, s=55 u=0U4, v= %ﬁ, z = Dz,
g
This choice of scalings reflects the fact that the scale for the gas velocity v is effectively deter-
mined by (14), and that the gas temperature must at all times be between Ty and T,. Also,
we will consider only disperse sprays where ag < 1 so that we may approximate 1 —a by 1. In

non-dimensional form, the equations (13)-(17) become

- fa
(Ga): = M, (18)
. ba _
ING et ]
g | _
@) = - (a-8) - M=, (20)
g
ns. = M2
@3 25 (21)
= - af
(#0); = Dz + RM% (22)
where the key non-dimensional parameters are given by
_ 3Dk (T, — Ty) = kg N = ugDoxg
© UpaLsg T epgPaoU D’ T Upyst’
y = _Pa_ __ Ty
Palpn ’ TS — TV ’

and the boundary conditions are

=1 1) =0, FO)=0, 50)=1, &0)=1, @0)=1.
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We now drop the bars from the vari-

ables for simplicity. The system may be i *\\ 6@_‘_\“&@-.«
reduced in order by noting that, from ' \\@l\\s_\\w.“\\@«-***
(18) an d (19) £l S': N Q{\‘N\w\wj.ﬂq\,
cu + v = constant = ¢, 051
P \\y
" say, and, from (18) and (20} that 044 o,
9N« o
auu=—-—2?-()\u—'u) 02-:
where ' = d/dz. Hence, writing au = w, TRy R 7
we find that X
w = _M wg, (23) Figure 2: Droplet size distribution and temperature
9"3@2 as functions of non-dimensional distance for the case
u = ——W(x\u+urf e1), (24) R =4/10, M =T = 1. Here c; = 0.35, ¢z = 0.83
. Mo and there is no vapoir layer
§ =, (25)
3su
REMb6w
- T, (2
((ex —w)6)'=T8"+, (26)
© with
s(0) =1, u(0) =1, &(0) =0, w0 =0, #1=1 wd)=ca. {27}
Now (23) and (25) imply that
w = 5°
since w =1 at s = 1, so that
9
w Vi = _}\_/_f__, (28)
u '] - .

N
v = —%—()\u b — e1)(29)
and, using (23), (26) integrates to

g = (e —w)f — Rw+c2 (30)

where ¢, is another constant. The three 04
first—order equations {28)-(30) must be { ™
solved and ¢, ¢z determined using the 021
five conditions (27} ]
It is only possible to make meaning- A 02 04 0R . e N

ful further analytic progress in the case X

N = 4
0, when ¢he system reduces to the Figure 3; Droplet size distribution and temperature

first i . .
—order equation as functions of non-dimensional distance for the case

L9 _fw—c)+ Rw—o R=4/10, M = 5and T = 1/2 Here ¢ = 0,
dw Mowt/3 ¢o =~ 0646 and a vapour layer exists in the region

£~0772<2<1
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w(0) =1, 8(0)=

-1
and
w(l)=c, 6(1)=1.

It is now relatively easy to find 6, w, ¢; and c; by numerical integration; we therefore present
some illustrative mumerical results

When R = 4/10 and M =T = 1, we find that ¢; = 035, ¢z ~ 0.83 and the droplet size
distribution and temperature are as shown in Figure 2: since ¢; > 0 there is no “dry-out”, i.e.
no droplet-free vapour layer hear to the steel.

However, when we set R == 4/10, M = 5 and ' = 1/2 we find that ¢; = 0 so that the
droplets evaporate before they reach the steel at a position # = 0.772 (with ¢y ~ 0 646). The
results in this case are shown in Figure 3; the value of £ is determined by requiring that 9 be
continuous at z = £ and that a layer of pure vepour exists in £ <z < 1

Various asymptotic limits may also
be considered. For example, when M > e
1 and MT = O(1), the solution is given E
by ¢g = 0and § = 0, w = 1 ex-
cept in a boundary layer near to £ =
I. In this boundary layer w = O(1),
§ = ¢()/(MT) and = = £~ &/T/M _
where 0 € € < oo is the boundary 43
layer variable and ¢ denotes the tem-
perature in the boundary layer Though g 7.
the boundary layer equations cannot be . 8
solved in closed form, since 8 = ¢y/T for g g o BTN ;
¢ < <1 wo have ) g4  BA o8 _ 1

Vesttitason,
NS pn,

st 1

T 0
i=1- ] (1 - j%) Figure 4: Dropiet size distribution and temperature
a8 functions of non-dimensional distance for the case
so that fche vapour layer is thin. Nu- p — 4 /10, M = 40 and [' = 1/40. Here ¢; = 0,

merical results for the case M = 40, cz 2 0.400002 and a vapour boundary layer exists in
I' = 1/40 and R = 4/10 are shown in  ¢pe region £~ 0.982 <z <1

Figure 4 Here ¢ ~ 0.982, ¢y ~ 0400002, and the boundary layer scalings are thus corrobo-
rated.

In the Limit A > 1,I'M > 1 it is possible to derive a closed form solution to the boundary
layer problem, though this is too complicated to be helpful. Other asymptotic limits may also
be examined, but we do not pursue them further here. However, these simiple numerical exper-

iments suggest that the model (23)~(27) can be used as & design tool to determine conditions
under which dry-out occurs
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2.5 Comments and conclusions

The above modelling and analysis neglects many aspects of spray cooling, both physical
and mathematical. On the modelling side, we have ignored the implications of droplet size

distribution, the discrete nature of the spray heads, compressibility effects and the presence of an
air/steam mixture On the numerical side, our numerical results have given us confidence that
the model as proposed can predict dry-out and hence be used to give quartitative information
about controlling the cooling sc that dry-out occurs just at the stee! surface. This is likely to
be the optimal operating regime, in which the maximum cooling is obtained for a given water

supply.

3 Blast Furnace Reaction fronts

3.1 Physical Background
A typical blast furnace is shown in Figure 5. Its funciion is to produce pig iron from raw
materials iﬁcluding iron ore, coke and lime-
stone. Thesé granular solids descend contin-
wously through the furnace at the same time
as air moves up through the grenular strue-
ture having been preheated to 1000°C and
blasted in through the tuyeres at the base
of the furnace. This causes the coke to burn
in a reaction zone, and the resulting liquid
slag and pig iron collect at the bottom of
the furnace.
There are many aspects of blast furnace
operation that warrant mathematical mod-
elling (see, for example, [7]), but here we
will focus on the reaction zone, tradition-
ally referred to as the “intermediate region”
{IR). This is a relatively thin layer at the
base of the solids, whose gecmetry has been
found o be a key indicator of the perfor-
mance of the furnace. In particular, the lo- Figure 5 General details of a typical blast fur-
cations of the maxima and minima of the nace
Leight of the IR have been proposed as pa-
rameters that should be used to control furnace operation. Hence the ultimate aim of the
mathematical modelling is to understand the relationship between the shape of the IR and the

pig iron production rate, and we will attempt to do this by formulating a free boundary model
for the IR,

3.2 Oune-dimensional Heat and Mass Transfer
We begin by proposing a simple one-dimensional heat transfer model to determine the
location of the intermediate region in a blast furnace operated contimiously in a steady state’

/
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A schematic diagram of the geometry and nomenclature that has been adopted is given in
Figure 6 Under the assumptions listed below, the equations for the varigbles T, T, Ug and
Pg are as follows:

PXaPsCstis Tog = h(Ty - T3),
CgPgCotigTye = R(T, ~ ),
Ugz = 0,

g | ug |= ~Kpye,

where the subscripts g and s re-

fer to the gas and solid phages

respectively, T' denoteg tempera- TOP OF SOLIDS
ture, p denotes density, ¢ denotes
specific heat, o denotes voliime -,
fraction (a, + @g = 1), u denotes
speed, p denotes Dressure, K ig
a‘-(positive) constant with dimen-

sions m?/kg and the subscript z
denotes differentiation in the ver- e e A L NI
tical direction. The gquantity 4 > ug >0\ INTERMEDIATE
0 is a heat transfer coefficient thag REGION

is assumed to be known and has GAS FLOW

dimensions W/m3/K. The solids \ ;Uﬁigcﬁ//
are descending, o that Us < 0 and

the gag ascends, so that Ug > 0,

The bounda,ry conditions for -
T (PIG TRON
(31)_(34) are taken to be \ FINAL PRODUCT (PIG )

Figure 6: Schematic and nomenclature for mathematical,
TS(L) =1, Pg (L) =l (35}

and, at the free boundary z = d,

LHa,

Tg(d) = TQU —+ Ta: pg(d) =p90 + Pa, Ts(d) = Tm - P
sCs

(36)

Here z = [, denotes the top of the solids region in the furnace and z = d(< L) denotes the

unknown location of the intermediate region. T, and p, are respectively the temperature and

pressure at the top of the furnace, Tgo and Pgo respectively are the excess temperature angd
kot gas ig injected throy

barameters are listed in the Appendix 2.
The equations and bourdary conditions (31)-(36) include many modelling assumptions.
These may be surmmarised as follows:
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Only thermal energy is considered and, above the reaction region, energy is conserved in
both the gas and the porous solid phase, thers being no hest transfer through the furnace
walls. Energy is transferred from the gas to the solid and wice wversa via a heat transfer
coefficient A,

Hesat conduction is ignored in both equations (31) and (82). This is justifiable since, using
the values in Appendix 2, the thermal conductivities &, and kg are such that

——»——L ~ 0.0025, L ~22 %1078,

psCs{—ug)l PgCqlly
For simplicity we assume that the u, is known from measurements, and that, because of
constant replenishment with solids, the top of the solids region z = L is fixed.

Ergun’s law [2] is assumed to apply in the solids region. This means that the superiicial
gas flow velocity u, (i.e. the velocity measured by the total gas mass flow through the
furnace) is given by

AP _ 150p4(1 - g )thg N 175(1 — arg)pgtty | g |

352 3
L Qs ajap

where L is the length of the region across which a pressure drop AP Is applied, ug4 is the
fiuid dynamic viscosity and a, the diameter of a typical solid particle. In this formula, the
first of the terms on the right-hand side may be thought of as representing the “Darcy”
contribution to the flow, while the second represents the effects of inertia. Using the values
in Appendix 2, we find that the ratio of the former to the latter term is approximately
4% 1073, and thus the Darcy contribution has henceforth been ignored.

We have assumed that pig iron production takes place only in the intermediate region and
that consequently no molten iron drips down through the porous medium from above the
intermediate region. Additionally, we have assumed that the latent heat of the melting
of the iron af the intermediate region may be lumped into the reaction

All chemical reactions have been ignored except in the last boundary condition (36). This
may be derived by considering the combined effects of heat conduction and an exothermic
reaction in the IR (see, for example,[8]).

3.3 Non-dimensional Equations and Parameter Identification

Since one of our main reasons for proposing a simple model of a blast furnace is to identify
suitable control parameters, we now non-dimensionalise (31)-(36). The length scale is chosen
naturally so that gas-solid heat transfer balances convection; we thus scale using

z=L—I~(

OﬂsPsCsus) =
— | T
h

I, = To + (Tm - Ta)‘TSs Tg =T, + (Tm - a.)Tg:

Pg="Pa +PgOﬁg: Ug = _Uﬂ-g:




. CHINESE JOURNAL OF ENCGINEERING MATHEMATICS

7= —pgth
\/ Qs PsCsUsg

and an overbar denotes a non-dimensional quantity After non-dimensionalisation, the problem
is defined on the region 0 < z < d where

g @=Lk 4

7
CsPsCsUsg

and it is important to note that the intermediate region is now “above” the top of the solids
which are at Z =0 The non-dimensional governing equations become

T,
Biig Ty
Ugz 3
Ug ~ | Pz |72 Doz,
and the non-dimensional boundary conditions are
T,(0)=0, 5,0)=0

and

TQ(J) = ﬁg(g) =1, Ts(&—) =1-4d

"Fhe key non-dimensional positive parameters 3, v and § are defined by

QgpgCall Ty AHo,

f= aspscs("us) : - T — Ty’ B Pscs(Tm - Ta) .

Though the physically obvious control parameters in the problem are the initial gas ternperature
Tgo, the initial gas pressure pyg, the chemical “mix” of the solids {represented in our model by
AH and ¢.) and the material replenishment rate at the top of the furnace, in our model the
process is controlled only by the three non-dimensional parameters B, v and § Using the values
in Appendix 2, wé find that

Be~6, v~07, §~001, (38)

but further investigation of some of the key parameters may be required before we can be sure
of the orders of magnitude suggested by (38)
The equations may now be solved using elementary methods. We find that

by = _(d)_llz: Py =

and, assuming that 5, + e~0d # 0, the temperatures are given by

T, = '}'ﬁﬁg(l - eﬁfi) T 7(/31_"3 + e_ei_c)
By tetd 7 ¢ Btg + 0

H
where we have written 1

f=14+——
By
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Tmposing the final boundary condition that Ts(d) = 1 - § now gives a transcendental equation
for the non-dimensional position of the intermediate region d in the form

_ 8,1 - e~

1-6= = (41)

This may be rewriiten as
1-4

= Fld; 8) (42)

8L - exp(~d(1 - Vd/B))]
B — Vdexp(—d(1 - Vd/B))

fld;8) =

We note immediately that only
two combinations of the control
parameters {§ and {1 —4) /) de-
termine the location of d Anal-
ysis of f(d; 3) further shows that %
F(0;8) =0and f —0asd—oo %]
A sketch of a typical f(d;5) vs
d curve is shown in Figure 7 for
the illustrative value § = 1. The
fimction f has a single maximum

which must be determined numer-
ically (except for the special case
when d = 3?%; see below). Denot-
ing the maximum of f for a given
value of 8 by f3, we conclude that
d exists (though it is non-uniquely

determined) unless

- Figure 7- f(d; 8) vs. d for illustrative value 5 =1

—_— > .
~ fa

This condition means that the problem has no sclution when

AHQC > Tg()fﬁ
Pscs(Tm —To) T —Ta

1

i€ when

FopscsTyo + LHae < pscs (T — Ta)

This appears to be sensible on physical grounds as it asserts that no solution to the problem is
possible if 7, is too large {the reaction happens at too high a temperature), if Typ is too small
(the gas in the tuyeres is not hot enough), if AH is too small (not enough heat of reaction) or
if o is too small (not enough fuel in the solids) We return to the issue of the non-uniqueness
of the position of the intermediate region in section 3.5.
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It has been implicitly assumed that d # % in (41). This restriction arises from the fact
that there is one special case; if it happens that

& 32

v 1+p2
then the solution is given simply by

= 1+ vz _—
I}:W’ TS=1—-'-_—/62-’ pg__

3

s B

3.4 Two-dimensional Heat and Mass Transfer

It is a matter of great interest to study possible lateral variations in the location of the

intermediate region. To study these, we assume that the blast furnace has width 2w and the

extent of the solids region is {R : d(y) < z < I, —w £ y £ w}. We ignore conduction across
the furnace which means that it will not be possible to impose temperature boundary conditions g
on the furnace wall. We also assume that, although the gas may fiow in both the z- and the
#-directions and has velocity g, = Uges +vgey (where e; and ey are unit vectors in the  ard
y directions respectively), the velocity of the sclids is still given by g, = useq with u; < 0
presbribed. The steady-state governing equations are now

s PsCotsL s = h(Tg - Ts):

CgPgCy [%ng + v Tgyl = h(Ts — Ty),

Ugz + Ugy = 0,
Kpg:l: — Kp,g

b A e R e
ug—i-'ug ug-i—vg

with associated boundary conditions

TS(La y) = Ta.: pg(L)y} = Pa,

) . AHeo,
To(d, ) = Tooy) + Tar  Poldit) = 0go{y) + Py Ts(d,y) =Tm — P

Doy, £w) =0,

since there is no gas flow thorough the furnace walls. We non-dimensionalise the problem,

y= (_—-asp;fsus) 7, vg=-Us,,

U= M,
\| s psCstis

using {37) and

where, as before,
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The equations then becoms

Tsi

ﬁ[ﬁgfgi + ﬂgfgy‘]
ﬁgﬁ + ﬁgg

‘8

with associated boundary conditions

Ts (01 g) = 0:

ﬁg(ow ﬁ) = 03

where

Noting that

we find that the governing equation for Py is

ﬁgi: ‘ﬁgﬁ _
(1 5, II/QL - (i V5, llfﬁ)g =0 (43)

There is clearly little hope of finding exact solutions to {45) for a general unknown boundary

d and éven its numerical solution is non-trivial. However, we can use (45) to examine the the
stability of the one-dimensional solution (40)

3.5 One-dimensional Stability

It is natural to investigate the temporal stability of the solution (40). Adding time variations

to the heat transfer equations and non-dimensionalising time using ¢ = (cespscs/h)E, the non-

dimensiona) problem that must now be solved is

Tsf + Tsﬁ g~ T. ’ (4-6)

®9PgCo \ 7\ g T : -47
(Cﬁspscs) Tgt +,6'Urg o ( }
Tgz (48)

g | 1y | Bz {49)

with associated boundary conditions

T,{0) =0, 5,(0)=0, Tg(&) =7 ﬁg(g} =1, Tfd)=1-4

Using the values in Appendix 2, it transpires that the gas temperature parameter (o £gCq) [{cspsts)

is negligible and we shall therefore ignore the time derivative in (47). For the remaindér of this
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section the overbars will be dropped for convenience We deal with the Ergun equation fArst,
and set
Ug = Ugg + eRe(ug1e) + .., Pg = pgo + cRe(pge) + ., (50)

The free boundary is assumed to be at
T =dg + ¢Re(d1e”) + ..,

where, as usual for linear stability analysis, ¢ is assumed to be “small” and wugy, pg1, di and o I
are in general complex. On solving (48} and (48) and Imposing the necessary conditions on th
free boundary, we find that, as before,

1 T

1L = —— =
g0 \/EU” Pgo

1
UI:'— plz
Y TC

We now turn to the heat transfer equations (46) and (47). We set
T =Ty + eRe(Toe®™) + ..., Ty="Te+ eRe(Tye™) + .,

The leading order problem gives, as we already know,

_ (1= gem=0-9)

1—e—=(~¢)
l-e L 1 I ge A

TSO = _"——-—1 = gbe_du(l_'- R

- Yo
g
The O(z) problems for the temperature perturbations are
(1 +0)Ta =T + 73, =0

— —z(1—¢)
Tg}_ _ T51 _ }_T! + d}_'}’(l ()ﬁ)e

¢~ 241 — ge—C-—P]

where a dash denotes a derivative with respect to z. On elimination of Ty, we find that

dyv(d — 1)e—=(1—8}
oTy + {1 _ (1 - O—)J T;rl - lT” - 17(¢ )e

é ¢ T 2dp[1 — qse—do(lw'é)]

At the free boundary we require T, = 1 — §. This gives one boundary condition for Ty in the
form |

7d1(1 - gle”%-9)
Taaldo) =~ 1 — ge—doll—¢)

end another is evidently T3, (0) = 0. We note also tha Ty(d) = v, and expanding this at the
free boundary gives

(53 |

s (1 _ qg)e—do{l—qb)
Tnlde) = - 1= go-50i=9)
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(which we note is also equal to $Ts1(do)). We may now use the fact that

Tgl = (l -+ G’)Tsl + T;l

to see that

(14 0 — ¢)Tsz{do) + Tsr(do) = 0.

Wé may now find T, from (52). By elementary methods, it may be shown that

diy(1 — Pl

— Tz Rz _
Tsj_ = 018 -+ 028 20’dg [1 — qbe‘dﬂ(l—‘b)}’

where Oy and Cy are arbitrary constants and

p—1—otp-1-0)+4daé
5 :

Bt =

' {f we now impose the boundery conditions T51(0) = 0 ahd (53), we find eventually that

DO 6 (0 ek )1 2ode)e=00H) — diyd(1 — g)erJ[FTT — ]
. 2o dy]L — g BT—D|[edok™ _ edor |

dyyg(L — g)(e* = — e %)
20dyl — pe—%1-¢)]

Finally (54) becomes
(KT — K7)[¢* — ¢(1 + 2doo) + 20do(1 + 0)] + (kYK ~ k" K™ )(20do — )+

(k+ — k7 )pe 7 =0 (55)

where we have written
" B _
Kt = ok , K™= gk,

Our task is now to solve (55) for ¢ and examine whether there exist o with with real parts
greater than zero, leading to instability.

3.6 Results of stability analysis

Tt is not difficult to solve (55) numerically We find that, when the ratio (1 — &)/ is small
enough so that two values of d exist, in every case the smaller value is stable, whilst the larger
one is unstable.

Though we have not been able to prove that all solutions of (55) are pure real, in every case
that we have examined we have found only pure real roots The following numerical results

are typical of our findings: when 8 =1/3 and (1—8)/v=1/4, we find from (42) that the two.

possible values for d are given by
d; = 0.3950273496, ds = 1.7640150539

(Note that we have worked here to 10 decimal places; such accuracy is required if the values
for o are to be determined with any confidence ) Corresponding to d;, we find the solutions

o = —0 1392305048, --2.5909704874 and —5 6318324789,
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However, the ¢ correspending to dz are
o = +0.2510589794, —0.9922509619 and - 8.9767227449,

showing that the solution corresponding to ds is unstable.

In each one of the many ceses that we examined, there were three purely real negative o
corresponding to the smaller root dq, and just one pure real positive o and a nureber of pure
real negative ¢ corresponding to do We therefore conclude that the smaller value of d is the
one that is likely to be observed in a real blast furnace. -

3.7 Two-dimensional Stability

The methodology used in Section to study global one-dimensional stability becomes unman-
ageable when we consider two-dimensional disturbances to (40}, Hence we confine attention to
the stability of {40} to disturbances that are confined near the IR, i.e. that have wavelengths
short corapared to the size of the furnace. Hence (46)-(49) become, in non-dimensional form
but with the overbars removed for convenience,

Tt +Ton = Tg — T,

B(ugTys + 09Ty} = Ts — Ty,

Uga + Vgy =0,

1

(ug,vg) = —WVPQ-

We seek only unforced modes in which Ty and pgo are independent of y, so that, at the free
boundary x = d, the conditions (43) and (44) are simply

Tg(da y) =% Ts(d:y) =1-4 pg(d’ y) =1

For our local analysis, we need only the behaviour of (39) and {40) as z T dy Hence the solution
about which we will perturb is

Vi .
d = dy, T30=1—5-{-(’7+5—1)($—d0), ngz’y-l-“"ﬁ—o(’}‘-i-(s—l)(:ﬂ—dg)
and
=1+i(x~*d) ) -
pg‘ﬂ dr[) Q) g \/%1

with the requirement that the perturbations are small compared to this steady state as x—dg ~
—co. When we proceed as in (50) and {51), we find that

0T + T510 = gL Ts1, (56)
B(ugnTo1z + Tyoztigr) = Tor — Ty, (57}
Uglz + Vg1y = 0
and

NI
Ugl = _—Q’O‘Pglws Vg1 = —V dﬂpgly
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At o = do, we need to satisfy

Vi
Jod
Ty + (5 +7—1)di =0,

Tg1 + (6+~v—1d1 =0,

d
Pg1 + Eﬁ =0. (58)

Since Pgize + 2Pgryy = 0, we can now seek disturbances with real wavenumber k in the form
Pg1 X exp(iky + v2k(z — dp)) where, without loss of generality, we assume that £ > 0. From
(58), with d = d; exp(iky), we find that

d~1 . k(j—l .
Pot =~ exp(iky + V2k(z ~ do)), g = N exp(iky + V2k{z — do)}.

Hence, from (56) and (57} with
T = f‘s (I) eXP(iky}, Th = CZ;g (z) exp(ik'y),

we have

—i’f’;’ + (1

(54— rl)kcfl
Vg

" exp(V2k(z — do))

~T%(1+J))T;+JT52—

with

~ d -

T+ (§+7v—1)d1 =0

at ¢ = dp, and

ol + T =T, — Ty

here ’ denotes d/dx and we also require decay as = — —co. Once again writing ¢ = +/do/8 and
denoting the roots of

—%7’2-’4- (1—%(1+0})r+o-—~0

by 7%, where the real part of ## is not less than the real part of v~, we see that we cannot
relate ¢ and & when the real parts of r* are equal. But if

Re(r+) > 0 > Re(r™), (59)
then we can derive the dispersion relation
E4(rT + 0 +1) - 6] + kv2[2(0 — ¢)° + 4o — 9} + 2+ 77 (2 + 20 — )]

—20p(c—+1+1r7}=0. (60)
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Though the dispersion relation (60) appears at first to be a quartic equation for o, further
simplification shows that the o* term cancels. As a consequence of this, (60) may be solved for
o to yield the relatively simple expressions

5 B(=2%~ V2 + 2¢)

T (61)
and
Q@ - 23Rk~ V39) <2k + 3k¢ — V3L~ )7) 2
2(6% — 24/2¢)
where

Q = —2ke + 4k + 3v/2k2.

)

Further analysis requires more space than is available here. However, it may easily be shown
that for k& > 1, the three values of o in (61) and {62) for which (59) is satisfied are
¢ 1

G~ E - §+O(l/k),

aw—%%—(§+g+oaM)

and
o~ —V2k ~ 14 O(1/k).

We therefore conclude that short wave disturbances are stable provided that $ < 2/3, ie
provided that +/dy < 23/3. Physically, this suggests that for short waves to be stable the ratio
U/{—us) must be large enough, so that the solids must not maove too fast,
For long waves with k << 1, we find that the three roots satisfy ¢ ~ O(k) and
&g — 1)

long wavelength instabilities are thus inevitable.

4 Conclusions

We have derived, and given some preliréinary analysis of two novel free boundary problems
for fundamental processes in the steel industry. The first problem concerns spray cooling and it
eventually leads to the novel dynamical system (28)~(30) whose singular behaviour determines
the Iocation of the of the vapour layer that controls the efficiency of the cooling. The second
problem leads to an unconventional fee boundary problem in a reacting porous medium, the
free boundary being the all-important “intermediate region” OQur stability analysis suggests
that this model has many interesting features that await further attention.

T e e L
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-Appendix 1: typical values of constants used in spray cooling problem

* There iz by no means unanimity concerning the values of density, thermal conductivity and
specific heat at high pressures and temperatures. In the current study though the temperatures
may be as high as 1500°C, we do nos expect Pressures higher than a few bar as the system is
not confined in any way We have +herefore used values from standard stearmn tables. Although
these may not be completely accurate, they are unlikely to be in error by orders of magnitude.
Data items marked with a dagger (1) are informed guesses on our part and need to be confirmed
with Bao and/or Linfen steel o

L =4214 % 1033 /kg/K (water, 10 bar, 100°C) (191, p-116)

Epg = 2032 x 103] /kg/K (stearn, 1 bar, 100°C)({9], p-116)

k =0 670W /m/K (water, 10 bar, =0°CY([9], p-124)

ky = 2 48 x 10~2W/m/K (steam, 1 bar, 100°C) ([9], p 124)
ky =135 x 107*W/m/K (steam, 1 bar, 1000°C) (9], p124)
L =122957 x 1087 /kg (water, 100°C){[3], p-174)

"ty =181 x 10~ 5kg/m/s (air, 1 bar, 20°CT)
pa = 958 5kg/m® (water, 1 bar, g0°C){[ol, p. 132)
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pg = 0.590kg/m® (steam, 1 bar, 100°C){[9], p. 132)

pg = 0.202kg/m® (steam, 1 bar, 800°C)([9], p. 132)

sq = 10™%m (drop radiust)

T, == 500 — 2000°C (varies along the steelf)

Ty = 100°C (assuming pressure conditions closé to atmospherict)

U/ = 5m/s (typical drop speedf)

D = 1m (typical spray nozzle to steel distancer)

Appendix 2: typical values of constants used in blast furnace problem

(In some cases the given physical constants, being somewhat hard to find, are not given at the
correct temperatures. We do not anticipate that the correct values will be very different from

those listed below, however )

ap = 5mm (particle size (radius) of solids: variable)

e ~ 0.4 (may vary from furnace to furnace)

g ~ 0.3 (depends on particle size)

cg = 1.189 x 10%J/kg/K (air, 1 bar, 1300K) {[10]}

cs = 0.709 x 1037 /kg/K (carbon (graphite), 1 bar, 300K) ([6])
h ~ 107%J/(m3sec K) (may be unreliable)

AH = 200MJ /mol (typical reaction; may be unreliable)
K = 3.16 x 10° (Ergun constant: calculated from other values)
kg == 0.09W /m/K (air, 1 bar, 1400K) ([3])

ks = 40.0W /m/K (air, 1 bar, 293K) ([5])

L = 10m (typical solids layer height)

vy =25 x 1074m? /sec (air, 1 bar, 1600K)

pgo = 10° Pa (1 bar)

pg = 0.348kg/m® (air, 1 bar, 1000K) ([6])

ps = 7.8 x 103kg/m? {carbon steel} ([6])

T, = 30°C (iypical ambient temperature)

T,0 = 1000°C ([7])

Ton = 1500°C (typical reaction temperature)

g ~ 10m/sec

1y = —im/hr = —2.78 x 10™*m/sec

Vi = 1670m? (total furnace working volume} ([7})

wy = Tm (working section width: furnace bottorn) ([7})
we = 10m (working section width: furnace top) ({7])




