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SUMMARY

The effect upon a high-Reynolds-number cross-flow of an upstream injection slot
and a downstream suction slot of given geometries and strengths is examined. It is
shown that the problem may be reduced to a single nonlinear singular
mmtegrodifferential equation. It transpires that, in the resulting flow, a total of five
different regimes may be identified. For crifical suction, the suction strength is just
sufficient to reingest all of the previously injected flow. For weaker suctions, the flow
is either suberitical, in which case ‘the injected flow that cannot be reingested forms a
layer downstream of the suction slot, or subsubcritical, in which case the low-
pressure region produced by the injection is of sufficient strength that the ‘suction’
slot exhausts, rather than ingests, fluid. For suctions stronger than the critical value,
the flow is supercritical, and the suciion slot ingests some of the cross-flow as well as
the previously injected flow, leading to an order-of-magnitude increase in the mass
fiow inio the slot. Finally, for supersupercritical flow, when the suction strength is an
order of magnitude larger than in cases previously considered, the injection slot is
effectively absent and the mass flow into the slot once again jumps by an order of
magnitude. In each case the equation governing the fiow is solved asymptotically and
numerically. Some limiting cases are also identified in which closed-form solutions
may be determined.

1. Introduction

IN THIS study the problem of a two-dimensional high-Reynolds-number
cross-flow over a flat plate is considered in the case where the plate contains
two siots. The pressures in the upstream and downstream slots are
respectively just greater than and just less than the free-stream static
pressure, so that the upstream slot injects a small quantity of fluid into the
cross-flow, whilst the downstream slot gives rise to a suction from the flow.

The original motivation for considering this problem arose from a study
of pollutant release from an exhaust channel. Under normal circuriistances,
no pollutant can escape from the channel. In exceptional cases, however,
the pressure in the channel increases and small amounts of pollutant may be
released. Under these conditions, the existence of a downstream suction slot
allows escaping pollutant to be recaptured and effectively removed from the
cross-flow. Since, from a practical point of view, the parameters known in
the problem are likely to be the pressures in the slots, the main
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Fic 1 Schematic diagram of slot injection/suction geometry for the critical
suction case

quantities of interest are the mass flows out of and into the respective siots. Un-
derstanding how these vary as functions of the slot pressures and geometry
will allow the design of the pollutant removal system to be optimized.

As well as pollutant removal, there are many other physical applications
where a combination of injection and suction may be important. It was
shown in (1) that boundary-layer separation and heat transfer could be
materially affected by injection, whilst the combined effects of injection and
suction have long been studied in relation to other forms of boundary layer
controt (especially in relation to the laminarization of flow aver wing
sections), the design of jet flaps, and the maximization of wake reduction for
projectiles.

A schematic diagram of the geomeiry under consideration is given in Fig.
1. The injection slot width is denoted by L, whiist the distance from the
downstreamn edge of the injection slot to the upstream edge of the suction
slot is given by Lo The width of the suction slot is denoted by LE The
streamlines are labelled (with non-dimensional variables; for details see
below) for the critical suction case described below.

2. The critical suction case

In this section, we consider the critical suction case where, for a given
geometry, the suction parameter & takes a value which ensures that all of
the injected flow and none of the free-stream flow is sucked back into the
suction slot. As far as pollution removal is concerned, therefore, this may be
regarded as the optimal suction arrangement since the maximum amount of
pollutant is retrieved for a minimum pressure requirement.

It is shown below that the problem of determining the flow for the slot
arrangement shown in Fig. 1 may be reduced to that of solving a single
nonlinear singular integrodifferential equation. The analysis is similar to
that given in (2), which itself has its origins in the ideas contained in the
‘inviscid boundary layer” study of (3). Since the determination of the flow
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for other suction strengths will be similar, the model presented here will
require only minor alterations to treat cases where the suction is non-
critical. The full viscous interaction problem for plate injection into a
separated supersonic boundary layer was studied by Smith and Stewartson
i (4). They found that, for blowing of order L. Re % a region of separated
flow of width L Re™® is formed upstream of the slot. To lowest order,
however, this region will not affect the details of injection and suction and
may be ignored.

The flow is assumed to be inviscid, incompressible and irrotational. Far
away from the slots, the free stream is assumed to have a pressure p.. and a
velocity U.. We take the injection pressure in the upstream (injection) slot
to be p.. + 5pUZe?, thus defining the small parameter € in the problem; the
pressure in the downstream suction slot is given by p.. — tkpUZe® where
k > 0. The slot pressures may therefore be controlled independently of each
other {changing the injection pressure amounts merely to a redefinition of
the small parameter £) Since the injection-slot pressure is greater than the
free-stream pressure only by a small amount, the injection flow forms a thin
layer which, using a well-known result of thin aerofoil theory (see, for
example, (5)), may be expected to have a height of order £°L.

Non-dimensionalizing velocities and distances in the outer flow with U
and L respectively, the non-dimensional stream function for the outer flow
is given, by the standard thin aerofoil source-distribution model (see, for
example, (6)), by

2 rox

b=yt S’(r)tan"( ! )dr+o(82).

0 =i

The term S§'(t) in the integrand arises from the fact that § has been
non-dimensionalized with L&?, and ¢ has been forced to satisfy the
kinematic boundary condition on y = S(x). Using Bernoulli’s equation, the

corresponding non-dimensional pressure in the outer flow is therefore given

by 2 = g
« - "t
pUs mlhy x—1

) (1)

where, as usual, the bar on the integral sign denotes a Cauchy principal
value integral.

We now consider the flow over the slots and the flow between the slots
separately. The order of magnitude of the mass flow from the injection slot
may be determined by noting that, for the pressure perturbations to be
within O(&?) of p.., as suggested by (1), the velocity in the injected layer
downstream of the injection slot must be Ofel.). Since this layer has a
thickness of order £’L, the mass flow must be O(g*pLU.). We therefore
define the mass flow by Me’plU,, where M is an (1) constant to be
determined. A consequence of these orders of magnitude is that a vortex
sheet separates the injected and outer flows.
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Deep within the itnjection slot the flow is assumed to be uniform. From
the mass-flow result given above, we conclude that velocities here must
therefore be of order £°1., so that the non-dimensional total siot pressure is
given by

p= p_pJZ + 162+ O(e"). 2)
We assume henceforth that these orders of magnitude apply all the way
upstream to the vortex sheet over the top of the slot. The physical basis for
this important assumption lies in the fact that, since the total pressure in the
free-stream flow is greater than that of the injected flow, the free stream acts
as a ‘lid” which effectively allows flow to escape from the slot only at the
downstream corner, (For further discussion and experimental evidence for
this effect, see (2).)
In the region 1 <x <1+ « between the slots, we scale x with L, y and §

with €L, ¢ with £2U.L and p with pUZ%. The scaled Laplace equation for ¢
becomes

iy, =0

to leading order, and, since by the definition of the mass flow it must be the
case that

$(x.0)=0 and ¢(x, S(x))=M,

we find that, in this region,

W= My/S(x).

The non-dimensional pressure between the slots may now be determined by
applying Bernoulli’s equation, yielding

Ps M?
p= pF-l_ %82(1 - ‘:S":‘,.“) (3)

In and above the downstream suction slot 1+ a<x <y (where y=
I+ a+p) the injected flow still forms a thin layer, so that the non-
dimensional pressure can be a function only of x to leading order, and is
thus given by the constant
ppUi - ke @
One consequence of this is that the streamiine that emanates from (1 + a, 0)
attaches to the downstream suction slot wall. This reflects the fact that an
inner region exists within a distance of O(eL) of the downstream suction
slot wall, though analysis of this inner region is not required in order to
predict the mass flow into the suction slot.

For the theory described above to be valid, the slot width L must be small
compared to any other physical dimension in the flow. For the mjected flow

p:
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to be essentizlly iaviscid, the Reynolds number LI./v>>1 and the injection
strength & must satisfy Re #<« e The njection must also be sufficiently
strong to blow off the viscous boundary layer. This will certainly be the case
if £ exceeds O(Re™*); in some circumstances, however, boundary-layer blow
off may still oceur for smaller values of ¢ since towards the trailing edge of
the slot the vertical velocity v may reach O(U..£%).

Having effectively determined the flow in each region, all that remains is
to ensure that the pressure is continuous across the dividing streamliine
¥ = S(x). This may be achieved simply by comparing (1), (2), (3} and (4) to
finally rettieve the nondimensional equation

1 O=x<]),
1 (780 1 1M
P2 o2 G<x<r+ 5
ik ¥ 2o UsrsiTe) ©)
—3k (I+asx<y)

The equation (3) is a nonfinear singular integrodifferential equation,
which must be solved subject to the boundary conditions S(0)=S"(0)=0.
The suction strength & and the mass flow M emerging from the slot are
unknown for a given geometry and must be determined as part of the
solution. A final boundary condition is given by the requirement that since,
in this case, the injected flow is completely absorbed by the suction slot, we
must have S{y)=0. It is worth pointing out that, although the pressure is
unknown (and indeed discontinuous) at x = 1, subsequent inversions of (5)
are insensitive to this and do not affect the model.

For linear singular integrodifferential equations on semi-infinite domains,
it was shown in (7) that in many casés a closed-form solution could be
determined. When the range is finite, as in this case, it seems that few exact
solutions are available. In the present case, the nonlinear nature of (5)
renders it uniikely that closed-form solutions to the problem are possible
(though see the next section for a particular case). Notwithstanding this, the
important properties of §(x) may be determined asymptotically without too
much trouble. Using standard methods, we find that

S(x)~K;x* (x~0), (6)
SE)~S() + Kl —xjlogll — x| (x~1=), (7
S(x)~Ks(y —x)* (x~7) (8)

As is commeon in such prob!emé, although expressions for the constants K,
K7 and K; may be written down, they are global in that they involve
integrals of § over the whole range and therefore cannot be determined a
priori.

In practice, the main item of concern for a particular given geometry is
the value taken by k and the corresponding mass fiow M, and to determine
these parameters it is necessary to solve (5) numerically. The form of the
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equation given above 1s awkward as it contains both singular integrals and
derivatives. For numerical purposes the equation must therefore be refor-
mulated. We begin by inverting (3) on the interval [0, y] using standard
singular integral-equation methods (see, for example (8) or (9)). Choosing
the inversion and the eigenfunction invoived therein to ensure that $'{(0Y =0

gives N 1 3
M The o d
.Sa)—‘_(¥%§)£ {Tff}S%OJ-x)

T (s (22222

2n Y1+ a—x|

If this expression is then integrated between 0 and x, the resuiting Fredholm
integral equation contains neither derivatives nor Cauchy principal value
integrals and automatically satisfies S(0} = 0. Carrying out this integration
gives

s o [ B a0, ©

§*(1)
where

)
(({X(‘r - 0P +{t(y - Jf)}é)z)
ylf—xi ’

gy = | () s (2222))

T y
X [?—I— % sin”" (h; y) —{x(y — x)}i]

+G%§H&—1— o (““+“X? ”P+hw_1—aﬁf)

yil+a—x|

+H1+ae)(y—1- a)}i(%ff +sin”? (Zx; Y))]

Numerical calculations may now be performed using a direct iteration
relaxation method. Assuming that S(x) is piecewise constant on each
interval [x;, x;51), {xp=1,. ,xy=1+e), the integrals in (9) may be
performed analytically to give the iterative relaxation scheme

g(i+1)(xj) = Z‘(ﬂ (S(i)(fk))_zlfz(xp Levs) — flx 6] + 810,

SUIg) = 590) + £,(59 V(x;) — 5xp),
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where

fl 1) :g | (Zsin (Zt%y) oy - o) -3 - sin™ (ZXY‘ )

+{x(y — x)sin? (M)
Y
=P G0 )

It — x|

+(t—~x)1og(

This scheme is to be applied for (>0, j=0,1,.,N, with $O(x)
‘guessed’. (In practice, the method proves insensitive to the values taken for
5@ In all the examples considered here and described below, initial values
of §%(x) =1 were used.) When convergence is achieved, the above formula
may be applied for arbitrary values of x in order to determine the solution
for x € [0, 1]U |1 + a, y]. In practice, it was found that in most cases a value
of abont (-3 for the relaxation parameter e was sufficient to allow fast
convergence.

The numerical scheme described above allows the equation to be solved
for given values of k and M In general, however, the solution obtained will
fail to satisfy the boundary condition S(y)=0. In order to compute
solutions that satisfy this condition, some extra consideration -of the problem
is necessary. Considering the region directly over the suction slot (as shown
in Fig. 1) we note that the dimensionless scaled equation ,, =0 must be
solved to determine T'(x) to leading order. This yields

_M(Gy-T)
§-T
Following a streamline in the region T(x) <y <S(x} back to the injection

slot, we find that, since the dimensionless pressure over the slot is
P-/pU% — 3ke?, Bernoulli’s equation gives

¥

Pe 10 P= 1, ., M€
St = - tke'
S22 T LT T T s Ty
and hence
Sx)—Tx)=M/{1 +k} (10)

This result shows that, over the suction-slot region, the height §—7T is
constant, and, since for the critical case necessarily S(y) =0, it follows that
the streamline T(x) reattaches to the downstream wall of the suction slot,
the flow beneath T'(x) being essentially stagnant. It should be noted that,
were the full problem to be solved, the streamline 7(x) would not be
expected to attach in this manner. However, since the asymptotic analysis
presented above is clearly not valid within a distance Ofe) from the
downstream suction-slot wall, the fact that T(y) is finite is a consistent
result,
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Equation (10), being essentially a mass-flow condition, also allows unique
values of k and M to be determined for a given geometry as follows: for

fixed &, the value of M is determined for which S(y) = 0. Evaluating (10) at
x =1+ o shows that, since T(1 + &) =0,

M=501+a)1+k} (11)

Using (11) to determine a more accurate update of M, am iterative
procedure may easily be constructed that allows rapid convergence to the
unique values of k and M that lead to solutions where both of the conditions
S(y) =0 and (11) are satisfied.

Figure 2 shows flow streamlines for a typical critical case with e =8 = 1.
In all computations described below (unless otherwise stated) 100 mesh
points were used, and the solution was deemed to have converged when
ISED(x) = SO (x,)) < 1078 for all x,. Computations (coded in FORTRAN) were
carried out on a Sun Sparc-2, each one taking only a few CPU seconds to
converge. For this geometry the values of k and M were 1-9146 and
1-9176 respectively. For clarity, a value of & = 0-3 has been used here and in
the other streamline diagrams below.

Figure 3 shows the values taken by k and M for a number of different
critical suction geometries. In the first case a took a fixed value of 1, whilst
the suction slot width 8 was varied. In the second set of results shown the
process was reversed so that 8 took the fixed value 1 and & was varied. The
results indicate that as the slot width or siot separation decreases k and M
increase rapidly. The slow decrease in the critical value of k as B increases

shows that, as might be expected, large suction slots are not particalarly
advantageous.

—-——’//_\

Fig. 2. Streamlines for the critical suction case with =1, =1 and
M=19176, k =1-9146
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Ble=1)

FiG. 3. Values of mass flow M and critical suction k& for various slot
geometries

2.1. A special case of critical suction

It is instructive to discuss a special case of the critical suction problem
where a closed-form solution may be determined. If we take o =0, so that
the suction slot begins where the injection slot ends, the problem becomes

rs’ (t) 3 O=sx<1),
} { ~k (1<x<y). (12

Inverting (12) as described above, we find that

st () [yt () (5]

. (121;5) log (({7 —xp+{x(y - 1)}%)2)_

vyl —x]

As usual, the inversion and the eigenfunction constant have been chosen so
that 5'(0) = 0. This expression confirms that, as expected, §'(x) ~ (y —x)™}

as x — v. The solution may now be completed by integrating with respect to
x from 0 to x (since S{0) =0) to give

)
[ (25w
(5 v (25

—yl — 112
+(x—1)log (({7 x}y;{f(; Dl )]




56 A. D FITT AND T. R. B. LATTIMER

For critical suction, this solution must be made to satisfy S(y) =0 This
condition uniquely determines k, the critical suction, in terms of y according
to

k= yr+2ysin™ (2 — )/ y) +4(y - 1)
yr—2ysin™ (2 - y)/y) -4y — 1)

As far as the mass fiow is concerned, the relationship (11) still applies, so
that M = (1 + k)S(1), thereby uniquely determining the mass flow for this
critical suction case. In particular, we find that, when the width of the
suction slot is identical to the injection slot so that y =2, then & and M are
given by

ka2zr+4 _( 2r )5
2z~ 4’ (m—2)/"

Using the formulae given above, the critical suction strength and the
corresponding mass flow may be calculated for limiting values of the
suction-slot width. For suction-slot widths that are large compared to the
injection-slot width we find that

4 1
— ———— ~1 —~— 8 _5 —_ 0
k~—m s O™, M~2+067) (=)

These results are in accordance with what might be expected; as the relative
width of the suction slot increases the suction required decreases, but the
mass flow that can be produced by the injection slot approaches a limiting
value.

For small suction slots, the corresponding results are

I 3\/(311')
1

3 _ 1y L 3V@m) SR e
~ )§+O((Y D), M g(y_l)g+0((7 D™ (y~1).

k
4y

The suction strength required to achieve critical flow thus increases without
limit, as does the corresponding mass flow that can be produced by the
injection slot. It is worth pointing out that this limit must be regarded as
being of academic interest only, since many of the assumptions and orders
of magnitude inherent in the modelling are viclated.

3. Subcritical suction

In section 2 it was shown how to determine the flow for a given geometry
when the suction strength is fixed at the critical value. Here, we discuss the
flow when k is less than the critical value for a given geometry. Clearly when
the suction strength is insufficient to suck all of the previously injected flow
into the downstream slot, a layer of injected fluid will be formed
downstream of the suction slot. We denote the dimensionless mass flow in
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Fic. 4 Schematic diagram of slot injection/suction geometry for the
subcritical suction case

this layer by N, and consider only the case where N is O(e’pLU.) Other
cases where the downstream layer has smaller order-of-magnitude thick-
nesses (and thus k is, for example, within O(¢) of the critical) may also be
considered, but, to leading order, these are merely the critical suction case.
Labelling the (non-dimensional) streamlines as shown in Fig. 4, we note
that, downstream of the suction slot, the scaled dimensionless stream
function ¢ 1s again determined, to leading order, by the equation ¥,, =0
and thus

In this region, therefore, the non-dimensional pressure is given by

P= 2(1 NZ)
= + JL S —
Por T i T os

For subcritical suction, the integral equation that must be solved to
determine the flow is thus given by

(% (O=x<1),

1 1M
— T (1<x<1+a),

I

- Lah‘={ k {13}
Al 1—x —5 (1t+ta=sx<y),

l_lyj ( <Y<I)

2 257 T
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This equation must be solved with S${0) = S§'(0) =0, and, for given %, both
M and N must be determined. Once again, the asymptotic behaviour of S(x)
may easily be determined. Near x =0 and x =1, the behaviour is similar to
that given by (6) and (7), whilst for large x it may be shown that

S(x)~N - ﬁz + o(logf) (x> @) (14)

For numerical purposes, it is once again easiest to invert (13) to obtain

M¥Vx (lte dt N?‘\/x ][
2 \/tSz(r)(t—x) \/tSZ(t)(t*x)

S'(x)=

1+k (Vy = V({1 + aP + V)|
* ( ) °8 }(\/’y + Vo)l + ¥ — V)|

and then to integrate with respect to x. All singular integrals and derivatives
are thus removed, the resulting expression being

M2 1te CNE™ 1
S( )——ﬂ_.[ Sz—([)fz(x’ I)df't‘ﬂ"; Sz—(t)fz(x: t)df

+ (1; )[2\/)5({1 + = Vo)

\/x+{1+a}%> -

|Vx — {1 + ¥ o )]

+(x—1—a)log( )log(lv ZVy

where

‘ VitV
o B

The problem may now be solved by determining S in the regions
[1,1+ «] and [v, 8], where § denotes the position of the final numerical
mesh point. In order to allow for the fact that, in practice, § must clearly be
finite, the tail of the infinite integral may be estimated asymptotically, giving

52 50 (2 s e ey e

where

0(s) = s + Y1 - 5?) log (‘;—i—i)
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The final numerical scheme (with xo=1, xp, =1+ @ and x5, =y, x5, = §)
thus becomes

. MEML
S (H])(x_f) = a; kgo (S{I}(tk))ﬁz[ﬁt(xj, fk+1) _ﬁt(xp fk)]
NZ Ny—1 .
+o= 2 (SO A, tee) — fily, 1)

27 2N,

xN? &
R0 Q(\/%-) ra ”
ST = S0k + .5 D) - SOx),

where

VitV
i 1) = —2V(tx) + (- x) log (ﬁ)

)= () -1 -y tog () e s (227

+2Vx((1 + et - '\/'y)].

The scheme is to be applied for i >0 and 0 <j = M;, N, <j < N, with S(x)
‘guessed’; when the solution has converged, values of x lying in the regions
[0,1] and [1 + @, ¥] may be used in (15) to complete the solution.

Once again, for a given geometry and (subcritical} suction &, the two mass
flows M and N must be determined. Two extra mass-flow conditions are
therefore required. As in the critical case, over the suction slot the scaled

non-dimensional stream function is given by

_MGy-T1)

4 S=T

Applying Bernoulli’s equation in the same manner as before, we find once
again that (11) applies. Finally, since the pressure must recover to p.. as
x— o, it must be the case from (13) that

N =5(=)

The two mass-flow relationships provide a simple strategy for solving the
subcritical problem; for a given geometry and a given suction k, initial
values M@ and N of the two mass flows are guessed. The
integrodifferential equation is solved in the manner described above, and
new values of M and N are generated via

MO =801 4+ a)(1+ k)L, NO=508) (>0)
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This simple iterative scheme works efficiently in practice, and invariably
leads quickly to a subcricital solution.

It should be noted that for this case, additional relationships may be
derived connecting the values of the mass flows and the values of § at
various positions. The simplest of these is obtained by multiplying both sides
of (13) by §'(x) and integrating with respect to x from 0 to . The left-hand
side is identically zero, leaving

0= fmS’(x) dx — Jﬂw 2/!2) S'(x)dx
’ Y
~(1+k) H&S (x)ydx — j 0 )S (x) dx.
Simplifying this result and using S(®)=N, M*=(1+k)S*(1+a) and
S$(0) =0, gives the condition

2 S+ oc)]
S(y) s@ 7

Numerically, it may be confirmed that (16) is satisfied for a converged
solution of the subcritical problem, thereby providing an extra check on the
solution. It is worth pointing out that, although similar procedures may be
carried out for the.critical case, because of the square-root singularity in the
derivative of § at x = v, the resulting formulae involve integrals that cannot
be calculated in closed form and are thus of little practical value.

Figure 5 shows streamlines for a typical case. Once again, the values
a = f3 =1 were used, together with suction k =1, the resulting mass flows

—2N=(1 +k)[2S(1 +a) - S(y) - (16)

Fic 5 Streamlines for the subcritical suction case with =1, B =1 and
suction k =1 (mass flows given by M =1 3927, N =0 5143)
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Fro. 6. Relationship between mass flows M, N and the subcritical suction k
witha=1 =1
being given by M =1-3927, N =0-5143. For all subcritical calculations, a
value of & = 10 was used.

Figure 6 shows the relationship between M and N for various subcritical
values of k, the geometry being identical to that considered in Fig. 5. We
note that, as k decreases to a value of around 0 4070, the mass flows M and
N become closer. Although it is possible to continue to perform numerical
calculations for even smaller values of k, clearly when N exceeds M, the
subcritical model becomes invalid as there is no longer any mass flow into
the suction slot. This eventuality is dealt with in the next section.

4. Subsubcrifical snction .

It was noted in section 3 that, for the case of subcritical suction, when the
suction parameter k falls below a critical value for a given geometry, the
mass flow N in the layer downstream of the suction slot becomes greater
than the mass flow M out of the slot. In this case, the subcritical model as
described above is clearly invalid. Physically, however, it is clear what must
take place when the suction becomes weak enough for such circumstances
to apply: namely, the pressure downstream of the injection slot is reduced to
such an extent that the downstream slot, although held at a pressure less
than that of the free stream and so nominally a suction slot, acts instead as a
second injection slot. Henceforth we refer to this case, in which none of the
previously injected flow is reingested into the downstream slot and thus
N > M as ‘subsubcritical suction’.

Figure 7 shows a schematic diagram of the region over and downstream of
the ‘suction’ slot. Labelling the streamlines and regions as shown in the
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Fig. 7. Schematic diagram of slot injection/suction geometry for the
subsuberitical suction case

figure, the relevant scaled dimensionless stream functions are given, to
lowest order, by

g M MOIT) (M-Ny =)
A s 3 B S—T 3 C W—T ,
¢D=~———M(y_T) =y——————(N_M)+M—N

e T
Matching the Bernoulli constant in regions A, B and D back to the

upstream injection slot gives the non-dimensional pressures in these regions
as

2 2
_P= 2[1 ﬁ'_l_] _P= 2k - P= 2[1 M ]
= + - RN ol SUp, == i
pA psz £ 2 2S2 > pB PU;Z: £ 2: pD pUi € 2 Z(S_T)z )
as well as the additional condition
M2=(1+k)S~T) (l+a=sx<y)

The relevant singular integrodifferential equation for the subsubcritical case
is thus p

l O=x<1),
2
%—%% (1<x<1l+a),
180, _{ k
S LA I rasx<y, 0D
T 1 M? (y <x.< o0
11 M L <o
2 265-17 V7 ’

and another equation is therefore required to close the system.
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To obtain this other equation, we pote that T(1 +a)=W(y)=0 The
Bernoulli constant in region C is thus

D .k 2(M_N)2 P ,k 2(M_N)2
£ g2t el R e
P E 2T W ST 2 2T 2Ty

Thus throughout region C we have
T(x) — W{x)=constant = T (y).

Applying Bernoulli’s equation from region C to E we find that

pe =L+ 32[_]£_ (N_M)2+(N—M)2}’

- pUL 2 27 2T2(y)

and, since this must be the same as the pressure in region D, it follows that

o= Tzl('y) )

M2

thk———=
i+k S-T7

Thus T(x) is determined in terms of S(x) by the quartic equation
L+ k)T (y)— (N - M)ZV)T4 +2S((N = My — T*(y)(1 + k)) T’
+ (Ty) (1 +K)S? = M?) + (T¥(y) = SN — MP)T?
—2STH(y)(N — MPT + S T*Hy)(N — MP=0 (18)

in the region y = x < oo, thus closing the system of equations.

Although the equations governing the subecritical and the subsubcritical
cases are superficially rather similar, there are major differences between
the two flows. For subcritical flow, a vortex sheet of O(1) strength separates
the injected flow from the external flow. For subsuberitical flow, this vortex
sheet is still present, but an additional vortex sheet (of strength O(g)) must
also be present at y = T(x). To see that this is so, i is easiest to consider the
flow variables in regions B and C. Although the static pressures in both
regions are equal, the total pressures are not. A vortex sheet must therefore
separate the two regions.

Finally, for a given geometry and corresponding subsuberitical value of k,
mass-fiow conditions are required as usual to determine values for M and N
As before, ome condition is provided by

M=S(1+a)1+k),
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Fic 8. Streamlines for subsubcritical suction case with @ =1, =1 and
suction k¥ =0 1 (mass flows given by M = (7823, N =0-8293)

whilst another may be obtained from the fact that, in order for the pressure
to recover to p. far downstream of the slots, it is necessary that
S{x) = T(x)~s M as x-» = From (18), therefore, we have

s0 that the condition for N becomes

kT2(y)(S(=) — M) )5
(S(==) — M)* = T*(y)

Figure 8 shows the streamlines for a subsubcritical case with a=g=1
and k=01 Once again, a value of 6§ =10 was used. The corresponding
mass flows were M =07823 and N = 08293, and the flow exhibits typical
characteristics of a ‘suction’ slot behaving as an injection slot. The major
difference between this type of injection and the injection from the
upstream slot is the absence of a ‘lid’ effect. This is cansed by the fact that
for the downstream slot, the effective ‘free stream’ has only an O(el.)
velocity.

It is worth pointing out that, if £ is allowed to decrease to values of —1
and below, the analysis presented above fails as the mass-flow formulae
become nonsensical For these values, however, other chanpges in the
assumed orders of magnitude in the flow must also be made and this point
will not be pursued further

N=M-J—(
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Fig. 9. Schematic diagram of slot injection/suction geometry for the
supercritical suction case

5. Supercritical suction

Having investigated flow regimes where the suction parameter k is less
than the critical value, we now turn to cases where the suction is stronger.
When k exceeds the critical value, some of the free stream flow is ingested
by the slot in addition to the injected flow. Figure 9 shows a schematic
diagram of the flow, and, by similar reasoning to that used already, the
equation satisfied by S(x) is clearly (5) with S(0) = §'(0) =0. In contrast to
the critical case, it is no longer true that S(y) =0, whilst y = R(x) (the
streamline on which, say, ¢ = @) is a ‘distinguished streamline’ of height
O(£’L) in the flow which determines how much of the free stream is
ingested by the suction slot. Bernoulli’s equation may be used as before to
conclude that R — § is constant, and also that

O=-S(y) and M=S(1+a)l+k) (19)

The procedure for determining the flow in the supercritical case is now
clear; for a given geometry and supercritical k, we determine the solution
where M and S(1 + @) are related according to (19). The dimensional mass
flow out of the injection slot is given, as usual by e*’MLU.p, but the mass
flow into the suction slot is —g°S(y)LU.p. The increase in order of
magnitude over the critical suction case arises from the fact that fluid with
velocity O(U..) now enters the suction siot.

Figure 10 shows a typical supercritical suction case with « = 8=1, and
k =2-3. The associated mass flows were M = 2-2739 and @ =(0-3917.

6. Supersupercritical suction

A final case may be considered where k becomes an order of magnitude
larger than 1. In this case (which we refer to as supersupercritical suction),
the mass flow into the suction slot once again increases by an order of
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F1G. 10. Streamlines for the supercritical suction case with @ = 2 =1, and
k =25 (non-dimensional scaled mass flows given by M =22739, Q=
03917

magnitude. We consider specifically the case where k = K/e (and K = o))
so that the suction-slot pressure is given by p.. — 1KeplU2. Since, to order ¢,
the pressure in the injection slot is now p., the injection makes no
difference to the flow to leading order and the problem becomes one of pure
suction Since the suction is now, to lowest order, solely from a free stream
of velocity O(U.), no vortex sheet is present across y = §(x), and we may
expect a layer of thickness O(Leg) to be ingested by the slot from the free
stream. The mass flow in this case is therefore O(L U.g). For slot suction at
arbitrary suction pressures, it has been shown (see (10)) that, though the
details are somewhat involved, the flow may be determined by hodograph
methods. In the supersupercritical suction case, which may be regarded as a
special case of this problem, the solution is, however, especially simple to
obtain.

Proceeding as in the previously considered cases above, with nomencla-
ture as given in Fig. 9, the pressure match over the suction slot shows that,
for 1 +a s<x =, T(x) satisfies

17 7T'() K
— —Adt=——. 20
T Hinl—X% 2 20)
Solving (20) subject to the boundary conditions T'(1 + a)=T'(1+ a)=0,
we find that

T(x)= —g [ ~{x—1—a)Xy—x)}+Bsin™! {%ﬁﬁ}]
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As nsual, this streamline reattaches to the downsiream wall of the suction
slot (at the point y = —KnB/4) The mass flow M may be determined by
applying Bernoulli’s equation to yield

M= (S -TY

and since, in particular T(y) = —Kz/4 and S(y) =0, the dimensional mass
flow in this case is given by

M=-1KrBLU.¢&

7. Conclusions and discussion

Using what amounts to thin aerofoil theory, the effects of the combined
action of injection and suction slots of given positions, dimensions and
strengths upon a cross-flow have been analysed. A total of five different
regimes have been identified, each involving qualitatively different flow
details. Figure 11 shows the relevant mass flows for a case where the
suction-slot pressure is increased from a subsubcritical value all the way up
to a supersupercritical. For the purposes of presentation, £ was once again
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Fic. 11. Relationship between mass flows M, N and Q with a =8 =1 for
values of k ranging from subsubcritical to supersupercritical
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taken to be 0-3, and the values & = 3 =1 were used. Convergence of the
various schemes was fast in all cases except those where k was slightly less
than the critical suction value. In these cases, much smaller relaxations were
required. Such behaviour is much as expected, since for such values of & the
layer downstream of the suction slot may be expected to be very thin.

In Fig. 11, an implicit assumption was made to the effect that changes in k
occur on a time scale of sufficient length 1o allow the flows to be considered
as a succession of quasi-steady problems. Since the slowest characteristic
speed involved in the flow is gl., this assumption is justified so long as the
time scale exceeds O(L/(¢U..)). For changes in the slot pressures that take
place more quickly, a full unsteady problem would have to be considered.

Another interesting observation arising from Fig. 11 concerns the fact
that, for subsubcritical vatues of k, both M and N decrease as k decreases.
This is explained by the fact that, for smaller values of k, the flow is
effectively partially prevented from escaping from the upstream injection
slot. It should also be noted that increasing the pressure at the top of the
downstream slot need not necessarily lead to an increase in the pressure at
the point from which the fluid that exits the slot emanates.

Finally, it should be recognized that the steady solutions that have been
derived may be unstable (see (11)). In practice, this may lead to the
thickening and roll-up of the vortex sheet separating the injected and cross

flows. For suitably large distances downstream, therefore, the theory may be
mvalid.
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