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Motivated by the need for the accurate prediction of ignition and flame
spread phenomena, contrasting numerical techniques were used to investigate
a prototype two - dimensional, two - phase internal ballistics problem.

Good agreement is observed between the two methods, giving confidence that
useful two - dimensional predictions of flame spread can be undertaken.

1. INTRODUCTION

In recent years a number of quasi one - dimensional two phase flow internal ballistics codes
have been developed. These give good agreement with experimental results for such quantities
as muzzle velocity and peak chamber pressure. However, for an examination of flame spread
phenomena and investigations of igniter performance these codes give insufficient detail, and
the early part of the cycle can crucially affect Lhe peak pressure developed. This is particularly
important for the understanding of weapon or igniter system malfunctions. We have therefore
undertaken the development of a two . dimensional axisymmetric two phase flow internal bal-
listics code. A similar approach has alse been taken in the U.S (TDNOVA!) and in Germany
(AMI?).

Two - dimensional flow calculations should yield much improved modelling of the initial
flame spread, and, after further examination of ignition criteria, should become a powerful aid to
igniter design. More accurate pictures of the flow near shot base will yield additional information
trelevant to the perennial problems of heat transfer, wear and erosion

The emphasis, in the early part of this work, has been on ensuring that the model equations
are solved accurately, and therefore a number of corrent numerical methods have been examined
The rationale for this step is thal il is important to distinguish between results which fail to
match experiment because of some shortcoming of the model equations, and inaccuracies which
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which result from the numerical solution scheme. We have therefore used two very different
techniques, which are described below, and compared results for a number of test problems.

The two numerical methods for which results are shown are based on contrasting approaches,
The first is a MacCormack forward/backward finite difference scheme, with an additional diffu.
sion term of the type suggested by Rusanov®, differenced as in the viscous form of MacCormack’s
scheme. The additional term is used to suppress the sensitivity of the basic MacCormack scheme
to the flow direction, and is required as the flow reverses after initial reflections. This approach
has the advantage of largely removing the oscillations near discontinuities in the flow which which
are typical of second - order methods, without undue smearing. In addition to this, the method
is simple to code and computationally cheap to run.

The second method used is the Weighted Average Flux (‘WAF') method due to Toro*, and
is based on the solution of a set of Riemann preblems. A number of schemes of this type have
previously been formulated (see, for example Godunov®, Chorin®, and Roe”) and it is the choice
of the form used for the flux term which distinguishes them. These schemes are capable of high
resolution and accurate capture of shocks and contact discontinuities. the updating flux at any
time in the present method is a weighted average of the flux vector across the whole wave struc-
ture derived from the solution of the Riemann problem at that time. This is combined with a
flux limiter to give a scheme whick is oscillation free in the neighbourhood of discontinuities.
The result is a simple but robust scheme which may be applied to the solution of systems such
25 that discussed below. '

2. MATHEMATICAL MODEL AND NUMERICAL SOLUTION TECHNIQUES

The mathematical model is based on the usual assumptions, that each phase may be represented
as a continuum on a scale which is large compared with the particle size It is assumed that the
particles are incompressible and interact with one another through intergranular stress, Interac-
tion between the phases is principally through the interphase drag, and the combustion of the
solid particles It is also assumed that the pressure is the same in both phases

The governing equations are then
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where the subscript | refers to the gas phase, 2 Lo the solid phase, and p to the primer Also
here & = intergranular stress, f, = interphase drag, ¢ = interphase heat transfer, @ = heat loss
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to the walls, these quantities being specified by independent constitutive laws, and s = mass
addition by burning, N2 = number density of particles per unit area and oy + g = 1. We also
employ the co-volume equation of state for the gas phase, and use the propellant burning law

% = —fp"
For the present computations, the bed was not loaded and the effects of interphase drag and
heat transfer were ignored in order to simplify the comparisons
1t should be mentioned in passing that there are some theoretical difficulties with the present
equations as they do not constitute a strictly hyperbolic system. Modelling work is currently in
progress on this topic however, and we do not discuss it further here.

3. TEST PROBLEMS, RESULTS AND DISCUSSION

The two numerical methods described above have been compared on 2 number of gas dynamics
test cases, one dimensional problems for which analytic solutions are available, as well as on the
internal ballistics problems described here. Results were computed for Sod's shock tube problem®
and for the colliding shock test problem of Woodward & Colella®. The WAF method gave better
definition with a complete absence of oscillations, but the results of the Rusanov - MacCormack
scheme were surprisingly good for such a simple approach Unfortunately space does not permit
us to show these results here,

The internal ballistics test problem considered here is a two - dimensional cartesian analogue
of the AGARD test problem posed in 1982'% A stick igniter of uniform strength vents into
a chamber of square cross - section, with equal volume to that specified for the AGARD test
problem, as indicated in figure {1) The propellant is that of the AGARD problem, a 7-hole
multitube, For all of the computations described herein, a mesh size of 50 x 15 cells was employed.
The size of the time step was determined as usual by the satisfaction of 2 local Courant condition.
Figure (2} shows isoparametric plots of pressure and temperature at 0 lms after the start of
primer venting, as the pressure wave reflects from the side wall of the chamber Figure {3) shows
pressure, temperature and both gas velocity components on a plane just off the axis of symmetry
at the same time. In figure (4), the pressure, temperature and gas velocities are shown for the
plane z = 0.0608 metres. It can be seen that in general, the qualitative agreement is very good.
Indeed, the isoparametric plots are virtuaily indistinguishable. Figure (3) suggests that there are
some very small differences in the manner in which the venting gases are treated and therefore
the amplitudes of the profiles However, the locations of the shock fronts are almost identical.
It should be noted that the difference in the predicted v-velocities is due to the fact that in the
current implementations of the methods, one has nodes placed at the edges of the computational
cells, and the other has cell - centred nodes, For most of the results this only makes a negligible
difference, but near to the axis the effect is more pronounced In figure (4), The zero u - velocity
in both cases is indicative of the fact that the disturbance has not yet reached this point of the
flow. Clearly, at this early time in the flow, both numerical methods are performing well.

Further results are shown for the later time of 0.75 ms, just after reflection of the initial dis-
turbance from the shot base Figure (5) shows isoparametric plots of pressure and temperature
for both methods, whilst figure {6) contains the temperature, pressure and both gas velocity
components on a plane just off the axis of symmetry These variables are shown again in figure
(7), but on the plane z = 0.0608 metres. In figure (5), the results from the MacCormack method
show a typical small second - order oscillation which results from the shock reflection. The
WATF method resolves the reflected shock more accurately, which is to be expected as it uses the
local solutjon of the Riemann problem. Both agree however on the position of the wave front.
There is clearly a region near to the side boundary where there is some disagreement between
the temperature profiles. The effect is local however, and may indicate that some revision of
boundary condition methodology is required. Figure (6) shows more clearly the post - reflection
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oscillation in the gas pressure produced by the MacCormack method. Again, nevertheless in
general agreement is very good, allowing for the differences in mesh - point location described
above. In figure (7) the difference in gas temperature at the wall is again visible. The vertical
scale on the gas pressure comparison should be noted, as it confirms the 5% disagreement which
was observed for the earlier figures.

4, CONCLUSIONS

Computations have been undertaken for a problem which is unsteady, two - dimensional and
involves strong source terms. In spite of these difficulties, good agreement has been obtained
using two very different numerical methods. This gives us confidence that detailed calculations
relating to igniter design and to heat transfer characteristics of weapon systems can be mean-
ingfully undertaken.
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