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ABSTRACT

1. INTRODUCTION

A simple meodel is presented for an acrofoil with a recirculating
Prandtl-Batchelor region behind a spoiler. Using thin aerofoil
theory the model is posed as a pair of coupled nonlinear singular
integrodifférential equations for the shape of the separating
streamline and the distribution of vorticity along the aerofoil
These equations are solved numerically and resuits are presented.
In particular, some conclusions are drawn regarding the ift on
such aerofoils.

NOMENCLATURE
<y, 1ift coefficient
hix) shape of aerofoil
L lift
L, aerofoil length
ey mesh point number when x = o
ng mesh point number when x=
N total number of mesh points
Poo freestream pressure
S(x) shape of cavity
.. freestream velocity
siope of spoiler
vorticity distribution

horizontal coordinate

vertical coordinate

scaled vertical coordinate in cavity
end of spoiler

position of cavity reattachment
non-dimensicnal vorticity
slenderness parameter

Bernoulli constant

scaled perturbation to Bernoulli constant
slope of aerofoil

density .

source distribution

stream function

scaled stream function
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perturbation quantity
non-dimensional quantity

%

Paper received 18 April 1993, revised version received 29 September 1953
Accepted 31 March 1994
Paper No. 1647

A simiple model for a stalled aerofoil is presented. In the present
context, the word “stalled” does not imply that the angle of attack
of the aerofoil is large, for thin aerofoil theory will be applied, but
rather that the aerofoil possesses an eddy located on its top
surface. Some details of the geometry are given in Fig. 1. Observe
that separation is ensured by the addition of a spoiler with a sharp
comer From this comer a separating streamline emerges which,
provided the eddy is not too long, reattaches tangentially further
downstream on the top surface of the aerofoil. Within the region
enclosed by the streamline and aerofoil/spoiler the existence of a
Prandtl-Batchelor) zone of constant vorticity is assumed. Else-
where the flow is assumed irrotational. If the body/eddy combina-
tion is sufficiently slemrder then thin aerofoil theory may be
applied; we adopt this approach here as it leads to a number of
productive simplifications. Historically, aerofoils where the flow
is separated have proved notoriously difficult to model It is
important, however, that simplified models are developed, both
for the purposes of calibration of highly complicated three-dimen-
sional numerical models and t¢ offer conceptual understanding.
Before describing the model in detail some relevant work of
importance i8 discnssed.

hix) + 8(=)

n{x}

Figure 1 Geome’[ry for aerofoil/spoiler combination
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Other constant eddy models have been used with success by
Childress® and O’ Malley et af®. Childress models the separated
flow behind both wedges and backward-facing steps by a Prandt-
Batchelor region, and O°Malley ef al extend this idea by including
both a Prandtl-Batchelor region and a region of constant pressure
(the classical Helmholtz-Kirchhoff model) The idea of a
Helmholiz-Kirchhoff (1e. constant pressure) infinite cavity has
been applied to aerofoils by Woods® (see also Ockendon &
Tayletr®) Inthe Childress model the free boundary value problem
can be reduced to a nonlinear integral equation for the shape of
the boundary between the eddy and the irrotational part of the
flow. This mode? is adopted below with the result that the shape of
the separating streamiine and the vorticity distribution are deter-
mined by two coupled nonlinear singular integrodifferential equa-
tions (Section 2) The numerical solution of these equations is
discussed in Section 3 and results and conclusions are presented in
section 4.

2. THE CAVITATING AERQFOIL

Guided by the Childress model for high Reynolds number flow
over a backward facing step, a model of a thin aerofoil with a
spoiler in the shape of a backward facing step attached to the top
surface at the leading edge is considered, as shown in Fig. 1 The
model for the flow will be derived for an arbitrarily shaped aero-
foil. Specific examples and special cases will be considered in lat-
er sections.

Referring again to Fig. 1, the region outside the aerofoil/cavity
body will be termed the “outer region™ Under the assumption of
inviscid, incompressible, irrotational flow with undisturbed free
stream speed U.. and density p, the siream function W in the outer
region must satisCy

Viy=0
with
Y~U,y as y-—oo

In addition, there must be no normal flow on the surface of the
aerofoil/spoiler body, and the Kuita condition of tangential flow at
the trailing edge of the acrofoil must be satisfied. As shown in Fig 1
the shape of the bottom surface of the aerofoil is given by v =
h(x}, (the aerofoil is assumed to have zero thickness and hfx)
therefore represents both the upper and the lower surface of the
acrofoil) whilst the shape of the top surface is given by y =
S(x)+h{x). The acrofoil has length L, and p,, is the pressure in the
{ree stream far away from the body The model is non-dimension-
alised with

u=U.Ly*
x=Lx*

| R
p=Eprp*+pm
h=gLh*
§=gLS*

Here £ is a small parameter which is defined more carefully
telow, but reflects the fact that the aerofoil is slender, and is
assurned to be the same order of magnitude as the angle of inci-
dence of the aerofoil to the freestream. Dropping the stars for
convenience, we therefore seek a solution of the form

Y =y+ey

where ¥ is to be determined

The stream function W is represented by unknown distributions
of sources and vorticity and a solution is sought of the form

1 1
V= j (1) tan‘l[LJdH jv(x) Tog((x— )7 +y*)dr (D
o Xt 0

where o and v are to be determined

From the work of Batchelor® it is known that if a steady
planar flow of an inviscid incompressible fluid containg one or
mere regions within which the streamlines are closed, then in
those regions the flow has uniform vorticity In the “inner” region
of separated flow, the non-dimensional stream function W there-
fore satisfies

Viy=-T

with ¥ = 0 on the boundaries. The order of magnitude of T, the
aon-dimensional vorticity, is still to be determined. The recirculat-
ing region is separated from the main flow and hence across the
streamline y = &(S(x)+h(x)) there will, in general, be a jump in the
Bernoulli constant, Note also that S(x} is partly known since
upstream of the recirculating region the geometry of the spoiler is
prescribed, whilst after reattachment Sfx) is simply equal to A(x)
Above the recirculating region, however, S is to be defermined,

2.1 The outer flow

In the outer region the problem for yis
VA =0
with, to lowest order
=k, +S, on y=0,
and
~W,=h ony=0_

As per traditional thin aerofoil theory, the boundary conditions
have been imposed not on the free surface itself, but on a slit on
the x-axis As y—0 we find from equation 1 that, for xe [0, 1]

1
T, = —mo(x)sgny +2 3( —;%dr
0

where the bar through the integral sign denotes the Canchy princi-
pal vaiue in the normal way. Imposing the boundary conditions on
y = 0+ and v = 0— now gives

o .
o(x) = o @)
and
[ vlo) Kos
b= 37 ®

0

Another well-known result from thin aerofoil theory states that
in order for the Kutta condition to be satisfied v(1) =0 The non-
dimensional pressure in the outer region may now be determined.
We have

2_ Pe 1

1
p+-2—iV\p'\ pliz 2

and on using Equations (1) and (2) and setting y = 0+ we find that

B
p:_—pﬂ’g & :F mS ) dt —2em{x)
pU. 2m o x-f
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2.2 The cavity flow

In the inner region it is appropriate to rescale the y variable by
setting y = £¥ To leading order we find that

Yy =—&°T
with

W=0on ¥Y=hand Y=h+S
giving

1§=—1rﬁ+1yns+ﬂo—lmxs+m
€ 2 2 2

On ¥ = 8§ + kin the inner region we have, from Bernoulli
i 2
+-\Vy| =k
¥Vl
where % is the Bernoulli constant. Thus to leading order
1
p=i-o(s)e’ )

For this to be consistent with an order € perturbation to the outer
pressure we require I' = O{e-12) so that ¥ = O(g¥2y Writing " =
&1 and dropping the overbar, the pressures may be matched to
yield an integral equation for $'(x) We assume also that the
downstream tip of the spoiler is at x = o, while reattachment takes
place at x = . This gives

-
K—S(Tsy =L-°2_i j'- S—(ervman v(x)
& pu. 2my x-t

Further setting

K= p°°2 e
prz

the two equations which determine wix} and S(x) are (3) and, for
xe [o, Bl

B
5)2 (¢
8 2 o X1t
The relevant boundary conditions are that at x = ¢ the stream-
line leaves the spoiler smoothly, whilst reattachmeént at x = Bis

tangential. Thus
S(o+) = Sta-), §(o+)=5"(o-)

and

SE=5'P)=0

1t should be noted that for the symmetric version of the model v =0
and equation (5) agrees with Ref 2.

2.3 Analysis of the model

To simplify the geometry we shall assume that the aerofoil/spoiler
combination takes the form of a flat plate aerofoil with an attached
triangular wedge beginning at the leading edge Thus

=
where |4 is a constant which will be less than zero for aerofoils
with positive angles of attack. In this case we have

B 73 13 r
J:S—(r)dr:—viogx n _{- S'(s) dt
V] o

x-f X x-f

where v is the (constant) slope of § in the ragion [0, o]

The two integral eqaations and boundary conditions now become
B

1 S'(2) %, 1 [x—ot)
el 2V =i - -
- 1[“ t=-ht 8"+ viog — |-2m(x)
(x e[, BY) &
with
Sy =va, So)=v, S@)=5B)=0
and
1
W B8
%Lx_rdr_ - (x&[0,1] o
with v(I[) = 0

Once these equations have been solved the siream function and
pressure of the flow may be calculated. Also, by the Kutta-
Joukowski theorem, the 1ift I, associated with the aerofoil and
cavity may be calculated

Some discussion is required concerning the number of free
Pparameters in the model. In reference 2 (corresponding to the case
v=0in the present study) it was found that, once the reattachment
point § was specified, the quantities A and T were umiquely deter-
mined. The same is true of the more general problem defined by
(6) and (7). The easiest way to obtain refationships between A and
I"is to mmltiply (6} by suitable functions and integrate from ¢ to B.
For example, multiplying both sides of (6) by 5(x} and integrai-
ing, we find that b

B
vl x—0 B
= i S(x)mg( . ]dx+lS(u)
. : @
-2153(05) - zuj V()8 (x)dx =0

o

a relationship similar to that found by Childress. For the case of
flow over 4 backward-facing step when v = 0 and there is no loga-
rithmic term in the expression above, a very simple relationship
between A and I results In the next section we show that, as far
as the numerical analysis of the problem is concerned, there are
more convenient relationships thar (8), but the crucial point is that
each relationship of this sort may be thought of as a compatibility
condition corresponding to the correct prescription of the slope of
S(x) at one or other of the end points Consequently there are only
two such independent relationships.

3. Numerical solution of the equations

The equations and boundary conditions (6) and (7) constitute a
system of coupled nonlinear singular integrodiffereniial equations
for the functions v and §, and the literature does not contain any
simple numerical schemes for such equations Further, the essen-
tial nenkinearity of the problem and the nature of the half-range
Hilbert transform operator make it unlikely that practical results
concerning convergence ete. will be available for any numerical
method which might be used. We therefore proceed in an ad hoc
manner, solving (6) and (7) by direct iteration. Before this may be
accomplished, some manipufation is necessary as it is evidently
desirable to avoid the numerically awkward operations of numerical
differentiation and Hilbert transform evaluation wherever possible.
With these considerations in mind, we begin by inverting equation
(6) to yield B

S=8=" Tt e 4

Tx—c)? ! (B ~ r}m P B—)x— o

where

2
fy=-20+ %—5‘2 +%Zog(x; u)_ 4nv(x)
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The coefficient A of the eigenfunction is zero since $'(f) =
and on integrating with respect to x and choosing the constant of
integration to be zero so that S(B) = 0 we find that, for x < x < B

S(x) = [ - ,B a}”’ 2% enyar+

(JB-n0 -0+ 0 )
' (B oo

&)

1 B
;if{r}log

For numerical purposes, equation (9) is in a convenient form as
the integrals are no longer of Cauchy principal value type and
derivatives of S do not appear Further, the quantities I" and A may.
be eliminated from (9) by uillising compatibility conditions as
described in the previous seciion. The most convenient way of
accornplishing this is to mulitiply by ((x — o)/(P — x)}*12 and inte-
grate with respect to x from o to . The two equations for T'Z and
A which result may be solved to yield

Blva+Js+Jg— 0, — ) (10}
J—J

2=

- VO!.(J1+J4)+2(.11J6+JJ5
AR—-a)(F—Jy)

T = Jy0,)

an

where

B g
B _ Y (B=x (
T
S v " i,
JB=#2'nJ.‘\/;v(x)dx J4=J B—xs (x)dx
x_ulov(x_a)dx J _‘2’“? x_&v(x)dx
B—x T\ x & cyB-x

If we suppose for the moment that v(x) is known, it is now
possible to ‘'set up an iterative solution scheme using (9), For
simplicity, we assume that the region {0,1] is divided into N
equally spaced intervals of width dx and that o = n,dx and P =
ngdx whers O<n,<ng<l. Approximating § as being a piecewise
constant on each interval (higher order approximations are also
possible, but acceptable accuracy was achieved with this simple
scheme), we assume that a previous iterate S@(x) is known.
Values for I'2 and ) are calculated from the expressions {10) and
(11) and colocation is used to produce values for SU+I(x) at mesh
points x, = ndx, where n, < n < ng via the formula

Xx—=0

SUD(xy y=—ZSin

i=1

21{ +— ZK(x ) (12)

where

rh
E=k(a-B) K= | j (SR ds
= —Jﬁ(f}log( de K,= 445] F@ewin)dr

et o
Ky(x,) = —lefz (o0t K (x,,0)= T'f(sﬁf)(z))z f(x,,0d

j Ieg(

sz(xn,t)dt Ey(x,)= —4:rt_[v(t)f2(xn,t)dr

and
_li-a
Ja(r>m1/m—ﬁ_t
foener (== 400 -
(2, =1og

(B-alx—1

Given piecewise constant values for § and v there are many
ways of approximating the integrals, but since the method is an
iterative one and there are likely to be many integral evaluations,
the simple trapezium rule was used for integrals involving § and v,
whilst a general-purpose NAG routine was used for J,, J5, K5 and
K-, The scherne (12) assumes that the function v(%) is known, but
in reality it has to be calculated at each iteration using the previ-
ous iterate for 8. There are a number of different methods which
could be employed to calculate v via (7) One approach which
avoids the use of derivatives involves integrating (7) to give the
Fredholm equation

1
Jv(t)log( )dt ~Ea-x- —S({l GG
0

The advantage that no derivatives are present is heavily out-
weighed, however, by the fact that this is a Fredholm equation of
the first kind, and we may anticipate ili-conditioning problems
These fears are borne out in practice, and, though for a small number
of mesh points simple methods produce an adequate solution, the
accuracy for finer meshes is not acceptable As an alternative to
this unsatisfactory method, equation (7) may be inverted to yield

1
uoIl-x 1 1-=x t S(pde
v(x)= -t [ o [ — —_— (14
) 21t\/ x 4752\] x -f\}lﬁt t—x

and, since § is given for 0 Sx <o and B < x £ 1, to evaluate v we
need only approximate §'(x) in [¢r, B] Vazious methods are avail-
able for this, but using a simple central difference combined with
mid-point evaluation of the singular integral leads to the formula

VotV
Wl

where

j‘_ { S (r)dz
oY 11 ¢
k'r—

El(x) = Sk+11; Sfc

forx, <x <Xy
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This crude method is surprisingly accurate and, although higher
order methods could be employed, provides quite acceptable
accuracy The method is implemented by making as initial “guess”
for S®x), and then calculating initial estimates for v, I'2 and A.
Experiments showed that the scheme was insensitive to choice of
SO)(x), but in all the calculations reported below the choice

V(x =By [x(o+ By —20°]
B-o)

was employed so that the correct derivative conditions are satis-
fied. The initial estimates for v, I'2 and A are then used in (12) to
predict SWyx), and the scheme may continve. In practice, it was
found that convergence was satisfactory, with three decimal-place
accuracy being produced in about 20 iterations. The results of (2),
which correspond to the case (L =0, v = 0 provided a partial check
for the method.

SPx)=

RESULTS AND CONCLUSIONS

Once the pumerical method has converged, it is possible to calcu-
late the lift L, Note that the pressure is symmetric about the
centreline of the cavity and so the pressure on the top surface of
the cavity is identical to the pressure on the bottom surface of the
cavity (the top surfdce of the aerofoil). Thus the Lift on the aerofoil
is the same as the Lift on the aerofoil/cavity combination, which is
given by

1
L= pUJV(x)dx
a

The non-dimensional lift

L

— 17

" pU,

L

is thus calculated by a simple numerical integration. Results for a
namber of cases are shown in Figs 2, 3 and 4. In each case the
number of computational points was determined by the require-
ment that three-figure accuracy should be produced. In Fig. 2 the
value |t = 0 was used and v(x} was arfificially forced to be identical-
ly zero The values o = 1/6, B = 5/6 and v = 21 were taken, and

10:0
75
5-0F
2.5

¢!
2.5 fp'd_
—5.0f
—7 5
=100

0-8 1.0]

ux)

(=]
w
T T

S(x)

101

05|

Q

0z . o6 08 x 10

Figure 3a Pressures, ufx) and cavity shape for case p =0, v=2x
with p=5/6 (C; =0-1161)

192 points were used. This case therefore corresponds to one of
the flows considered in Section 2, and it may be easily verified
that the résults match those reported in that study In this case the
flow is symmetrical and consequently the lift is zere. The final
values of A and I'? were respectively 1 283 and 12-521. The cavity
shape and the streamlines within the cavity are shown. Note that,
as in all the examples that will be considered, the streamlines have
been continued into the wedge in frount of the cavity. In reality, of
course, the streamlines cannot intersect this solid boundary but
must be contained entirely within the cavity This problem may be
surmounted by considering a further inner region where the flow
is fully two-dimensional; it was indicated in Section 2 how such
an analysis could be performed. In Fig 3a the non symmetrical
version of the Childress problem has been solved, where the angle
of incidence is still zero But v{x) is now not forced to be zero

N 02 0-4 0-6

20

18|

02 0-4 06 o8 ) 10

Figure 2 Symmetical (Childress) case when vix) is forced to be
zero (=0, v=2n

Figure 3b Cavity shapes for various 3 for case p=0, v =2,
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Figure 4. Pressures, u(x) and cavity shape forcase n=01,v=1
with o= 1/10, B = 1/2 (Cp = 0-03502).

Again the values ¢t = 1/6, § = 5/6 and v = 21 were taken, and 192
points were used The lift coefficient C; in this case was 0-1181.
The bottom part of the figure shows the cavity shape and the
streamlines, and above this values of u(x) = v(x)x V2 are shown. At
the top of the figure, the perturbation pressures p* and p~ on either
side above and below the aerofoil/eddy combination, defined by

B ’
Pt ] S 4% 2
2n 5 X-F

where the non-dimensional pressure is

Do + Epi

o

are plotted. In Fig. 3b the effect of variations in the reattachment
point P is examined. Again 192 points were used for each of the
computations and the values o = 1/6, v = 21 and 1t = 0 were used.
Cavity shapes are shown for the values § = 5/6, 2/3, 1/2 and 1/3,
the values of the associated lift coefficient C, being given respec-
tively by 0-1161, 0-0614, 0-0362 and 0-0224 As expected, the lift
decreases with decreasing f3.

175
150
125
1.00
075
0-50
0:25

Figufe 5. Cavity shapes for various sboiler heights (1 =-0-1)

Figure 4 shows results for a case where the angle of incidence
is non-zero. The values o= 1/10,B=1/2, u=-01 and v = | were

. used and a calculation with 100 points showed that the lift was

given by C; = 0-03502 whilst A and I'"? were given respectively by
07003 and 2687 One obvious conclusion for case where the
angle of incidence is non-zero is that the Iift depends linearly on
. Indeed, 1t may be scaled out of the problem. In Fig. 5, the
effect of varying the spoiler height is examined. Cavity shapes are
shown for the values o = 1/6, p = 5/6, 1 = —0-1. The calculations
were performed with 192 points and v = 1(1)5 The respective lift
coefficients for the five cases were (:055178, 0069716, 0-087313,
0:10541 and 012367 showing that, though the lift increases with
spofler height the relationship is not a linear one. It should be noted that
comparisons between large and small spoiler sizes must be treated
with caution, as the wokmown vorticity in the Prandtl-Batchelor
region may change from case to case. '
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