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Frrt, A.D , PLEASE, C.P.

Crack Propagation in a Geothermal Energy Reservoir

3

We consider the problem of the apening of pre-existing cracks with high presswre fluid in the case wherve changes
in the fluid pressure arve balenced predmnina.ntly_ by stresses due to the locel ereck asperity deformations. A model
is proposed for this process using a particular choice of ‘crack luw’ and ‘flow lew” which leads o a free boundary
groblem. A singular perfurbation anelysis reveals that, in the boundery layer, the motion of the free boundary is
govemcd by a singular integro-differential equation.

1. Introduction

Hot dry rock geotherinal energy reservoirs (HDRGERS) generally consist of large networks of interconnected sub-
terranean cracks, typically at a depth of a fow kilometres. Cald water that has been pminped into the netwaork fraan
a borehole is heated by the Lot rock and the resulting hot water is extracted at another borehole  To enhanee mass
flow, pre-existing cracks are further opened v pumping a viscons gel into the rock  To maodel the opening of such a
crack, we assume that a one-dimensional analvsis is appropriate (the aspect ratio of such cracks is imariably large)
and further assume that any influence of heatr tansfer processes may be ignored as timescale for such changes is
typically measured in years

2. A mathematical model for crack propagation in a HDRGER

Using Cartesian coordinates with the direction r assumed to lie along the crack and y normal to it and denoting
the crack width by i{r. 1), we assume that the rock is a Hnearly clastic mediune and the fluid is incompressible and
Newtonian with dynamic viscosity ¢ The fluid pressare in the erack is denoted v plr, 1), the normal stress in the
rock by o, and the reference stress (the least negative value of p+ o, when = 0) by o For £ > byax 2 crack
is assumed to he fully opened. It has also been assmmed that the minimme erack height is veror in practice this may
not be true, since even at very large compressive normal stresses there will always be a residual aperture, However,
it is invariably the case that Jy5 Mimax €01, and this fact is used to justify the neglect of Brin Needioss to sy
this assumption incvitabh gives rise to cracks with compact support. It mav casilv be shown, howeser (see. for
example [4]) that if by,;, is non-zero, the effect upon the solution is only exponentially small

To model the crack. we adopt a piccewise linear crack law that was first suggested in [6]. According to this
law, h = 0 when oy, +p < ap, whilst for o < Ty + p < 0 we have

hmax

{1)

h = hmax — {oyy + 1)
on

In effect, this law reflects the fact that in a ty pical HDRGER the fluid pressure alone is not enough to support the
normal stress. Instead, the load is distributed between the fluid pressure and local deformations of asperities in the
cracks. Other models are possible; for example. the ‘hyperbolic’ crack law first suggested in [2] has been frequently
used . Analysis is possible for this case also. though space does not permit a discussion here. When this Taw is wsed.
however, there are important differences in the mathematical techniques required to analvse the model. For full
details the reader is referred to [1).

To determine the fluid flow in the crack, a modification of Reynolds’ cquation is used. Based upon experimental
evidence, it seems that a flow law of the form

1 )
hy = 17#(&,,); ")z {2)

is the most accurate, where a, and n are constant  For parallel plates, a, = 1 and n = 3, however, for the type of
crack that we wish to consider, experiments indicate that a value of n close to unity is appropriate, and accordingly
we take n = 1. Once again, analysis is possible for other cases, some of which are considered in [1].
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To close the model, we use the standard plane strain elastic contact problem (see, for example [5]) to write

_ o « < Jh(s,t) ds
Uyy(lat) - Uyy - 21{(1 —_ U) —00 aS s — (3}

where o is the normal stress at infinity in the rock and G and v are respectively the rock shear modulus ang
Poisson ratio.

Using (1). (2), and (3). the quantitics 0, and p may be eliminated. It is also convenient to non-dimensionaliz
the model by setting b = hupaxh, * = LE, p = po — (0 + Po)P. oyy = ooy + (Ghmax/27L{1 — p)) and ¢ =

120 L f(whiax)f where L is the crack length, po is a typical fluid pressure and w = a10r/hinax. Dropping the
bars. the final equation to be solved is

8 oo Oh s —Gh.;n'p;
he = R, — eh— — here ¢ = ——————— Y
1] [n “8.1: ( . s s——r)L where ¢ ‘ZWJR(l—V)L (4J

Denoting the non-dimensional crack width by £(t), we consider the problem of the spreading of a fixed amount of
fluid. in which case (4) must he solved subject to the conditions

| £t - £ty
hir.t) :{ ‘;0 Ef;%”ﬁ(‘yl qry o 0D =0, /_[_mh(;r,t)d:c =1

These conditions assume that we seek to determine the large-time behaviour of the solution: the source condition
may be thought of as a matching condition We also insist that, since the crack is pre-existing, and thus does not
possess a stress singularity at its tips, h(e,t) = ol €(t) — ['/2) as r — ££(t). The non-dimensional parameter e
measures the relative importance of alterations in the deformation of the asperities and changes in the elastic normal
stress in the rock and may take various values in different circumstances; for the typical applications that motivated
the present study, however, it is of order 1/10 to 1/100, and hence the small € case will be considered below.
3. Analysis of the mathematical model
Seeking a regular perturbation expansion of the form
h=hg+teh +. . F=f+el) + ..
in the normal way, we fnd that the feading order partial differential equation is
hor = (hohos).e,
which has solution, (given for 0 < 5 < 1) by
A? 9 . 9\ 3 x
_ A g = 213 - {2z ==
ho = Gt‘/"(l ), Co(t) = At where A M= ST
[t is instructive to consider the asymptotic behaviour as 7 — 1 of the terms on the right-hand-side of (4). We find

that
a X Ohg d :
hohoe ~ 1 — 1, ho— (f Oi e ) ~1, as -1

r\J_o Os s—x

suggesting that a singular perturbation/matched asymptotic expansion analysis is required.

Away from the crack tips, the outer solution may be obtained by setting hi{z,1) = 23 H(n) and observiog
that H satisfies the equation

N 44X 2y 1+
11— YH" - +2H= — — —log| = .
(1-7) nH + 5 3 Oé’(l—n)

This has solution

-
Hipy=Al2+glog{ =2} ) +hy(m) 5
147 !
where h,, though easily determined in terms of polynomials, logarithms and dilogarithms, is somewhat involved. A
is an arbitrary constant, the other component of the complementary function having been discarded since it is 0

/_-’———
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Near the crack tips, where g ~ 1 —e¢, (5) is of order loge and is therefore not valid. To determine an inner solution,
;‘fe write hipper = ho + €hy + .. This slightly unconventional ensatz is convenient in this case as it ensures that /iy
remains bounded when matching takes place. Examin?ng the solution near the cracktipyp =1, weset z = { — €Y,
i = T, and note that, although kg is zero for = > A3 we expect that hy will not be zero at this point and write
() = AP+ efy(t) where {; > 0. With these assumptions, the leadifig order problem in the boundary layer may
pe formulated . Setting Ay = ¢(X,T) /T3, integrating once with respect to X, noting that T enters the equation
only 25 a parameter, and choosing the constant of integration to be zero 1o satisfy mass conservation. we find that
é catisfies

A A A U1 9p(5,T) dS :
_g_-g?i(.\ —f:(T))_‘j)Y—Fm*{*(]{ Wﬁ)\ 8)
or
6+ 20X~ LMY = 6(T) =0 @

where H is the Heaviside unit step function  Since (7) merely asserts that the crack has compact support, we
consider only (6). From the form of (6) it is apparent that another integration may be carried out. The constant of
integration, denoted by K, will be determined from the matching condition

The relevant constants may now be determined. Since the inass in the boundary layer is O(¢*) (1he boundary
leyer having height O{¢) and width Ofe), the constant A in (5) may be determined simply from mass conservation,
giving

A
A= _6(1 - 2log?2)

Determining the two-term inner limit of the two-tern outer solution, we find that for large X

X[ 2 x? QXT3
¢~§(—§+?+!og( P ))4'0(510?;")

Moreaver, a consideration of contributions to the integral tenm shows that the upper imit of the integyal in (G) may
be replaced by co. Using the matching condition to provide a relationship between K and 6 for given T and ¢, £

may be eliminated in favour of K. Further simplifying the problem by writing it in tens of the dependent variable
#X) where

g(X) =K — %log(l + X))+ % - %(X COVH(X — 1) — ¢(X),

we find that § satisfies the linear singular integro-differential equation

A 1+ X A . < g(S)
= 4 —log log X — e ——t)
0 + 3105,( ¥ )+3(1+_\,_) og X ][e TV 5 {8)

with
f0)=K, -0 as X — o0

Some discussion of (8) is in order. The parameter i must be determined, and, according to the stress singularity
condition, we seck the solution that satisfies 6'(0) = 0. Assuming that the equation and boundarv conditions (8)
pessess a unique solution for any K, (though this assertion is, in itself, a non-trivial matter) it is plausible that there
is precisely one K for which ¢’(0) = 0, though evidently this is not casy to show. The perturbation to the crack
length is then recovered from the relationship

3K
4 = _T +

ol 3,

2 (2)\1“/3)
~3 +log .

€

I? is not clear whether (8) may be solved in closed form. A general procedure for solving semi-infinite range linear
singular integro-differential equations was developed in {7], but its application is limited to cases where the Laplace
transform of f(z) is a polynomial. In the present case, the Laplace transform of f(z) involves exponential integral
ind Meijer G-functions and, in view of the fact that the asymptotic and numerical behaviour of the solution may
easily be established, we do not pursue the matter of a closed-form solution further.
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Numerically, the solution of (8) is a faizly standard exercise (see, for example [31) It is convenient to transform the
equation to a finite range by setting

. 1+ N
N=T 8X) = (),

so that the equation becomes
1 s
i (1 -1 =38 () A T+ A 2
- : ls=—=(1-rlog| — | — zlog
Sl ][_, 2(s — ) ‘ 6( r)log I—ur 3 0‘_“’(1 +x

(-tr=R, ¢1)=0

with

The asymptotic behaviour of ¢ may be determined at the ends of the range without difficulty, and using piecewige
linear approximations for ¢ awav from the vicinity of collocation points and quadratic approximations close tg
collocation points. the cquation may be reduced in an obvious wany to a system of simultancons linear equations
which mav then be solved nsing a lbrarny routine Some simple numerical tests showed that the method performed
well, and the solutions obtained agreed with the asvptotic estimates for €0 One significant advantage of the
hoandary laver analysis that has beew performed s rthat. to determine £ as a funetion of T and ¢, (8) nceds to be
solved once only. As an example, nsing 200 collocation point< the value of K for which ¢'(=1) = 0 was given by

K = =021 so that the crack length is given by

) 072 w2 RAVATA
(= A" e |- — — = +log :
() SR

4. Conclusions

Onee the crack proftle has been determined nsing the method deseribed above, the flow law {(2) may be used to
determined the pressares wheace (1) may be used tovield o, Al the relevant details of the erack opening process
may therefore be established We note that the pressare {relative 1o the referenee stress) is zero at the crack tips,
and the pressure in the crack varies smoothly throughout the crack. This coutrasts with the case when other crack
or flow laws are used, {see [1] for details) and provides confirmation of the fact that constitutive laws that may, on
the face of it, seem to beé somewhat similar, may give rise to versy differeat physical predictions. The fact that the
crack tip pressure remains bounded suggests that the model presented above does not require any modification in
regions near the crack tip.
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