Mr Izzedin Teeti

Thesis title: Predictive Algorithms for Advanced Autonomous Vehicle Perception

Start year: 2021


Supervisor(s): Dr Andrew Bradley, Professor Fabio Cuzzolin

Izzedin Teeti

Research topic

My research focuses on proposing deep neural network architectures, including computational Theory of Mind, to predict other road users’ intentions and future trajectories like cars or pedestrians.

In general, prediction in autonomous vehicles is challenging due to the uncertainty about a user’s future intention or trajectory and the multimodality of agents behaviours, as one past trajectory can have multiple possible future trajectories. Further, being multi-agent environments, roads host agents characterised by different goals and features. For example, pedestrians possess more diverse and unpredictable trajectories than cars, which can only use a finite number of predefined lanes, in manners restricted by road rules and geometry.